Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating

Akbar Yasmin1, Kumaraswamy Ramesh1, S. Rajeshkumar1
1Department of Biochemistry, Adhiparasakthi College of Arts and Science, Kalavai, Vellore District, 632506, TN, India

Tóm tắt

Abstract In this study, we have synthesized the gold nanoparticles by using Hibiscus rosa-sinensis, a medicinal plant. The gold nanoparticles were synthesized rapidly by the involvement of microwave heating. By changing of plant extract concentration, gold solution concentration, microwave heating time and power of microwave heating the optimized condition was identified. The surface Plasmon resonance found at 520 nm confirmed the gold nanoparticles synthesis. The spherical sized nanoparticles in the size range of 16–30 nm were confirmed by Transmission Electron Microscope (TEM). The stability of the nanoparticles is very well proved in the invitro stability tests. The biochemical like alkaloids and flavonoids play a vital role in the nanoparticles synthesis was identified using the Fourier Transform Infrared Spectroscopy (FTIR). Combining the phytochemical and microwave heating, the rapid synthesis of gold nanoparticles is the novel process for the medically applicable gold nanoparticles production.

Từ khóa


Tài liệu tham khảo

Rajeshkumar S, Kannan C, Annadurai G: Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica . Drug Invent. Today 2012,4(10):511–513.

Malarkodi C, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Vanaja M, Annadurai G: Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumonia . J. Nanostruct. Chem. 2013,3(30):1–7.

Vanaja M, Gnanajobitha G, Paulkumar K, Rajeshkumar S, Malarkodi C, Annadurai G: Phytosynthesis of silver nanoparticles by Cissus quadrangularis - influence of physico-chemical factors. J. Nanostruct. Chem. 2013,3(17):1–8.

Rajeshkumar S, Malarkodi C, Vanaja M, Gnanajobitha G, Paulkumar K, Kannan C, Annadurai G: Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides . Der. Pharma. Chemica. 2013,5(2):224–229.

Gnanajobitha G, Paulkumar K, Vanaja M, Rajeshkumar S, Malarkodi C, Annadurai G, Kannan C: Fruit mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostruct. Chem. 2013,3(67):1–6.

Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, GnanaJobitha G, Annadurai G: Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila . Drug Invent. Today 2013,5(3):1–7.

Vanaja M, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Malarkodi C, Annadurai G: Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv. Appl. Sci. Res. 2013,4(3):50–55.

Gnanajobitha G, Rajeshkumar S, Kannan C, Annadurai G: Preparation and characterization of fruit-mediated silver nanoparticles using pomegranate extract and assessment of its antimicrobial activity. J. Environ. Nanotechnol. 2013,2(1):04–10.

Vanaja M, Annadurai G: Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 2012, 3: 217–223.

Karthiga P, Soranam R, Annadurai G: Alpha-mangostin, the major compound from Garcinia mangostana Linn. Responsible for synthesis of Ag nanoparticles: its characterization and evaluation studies. Res. J. Nanosci. Nanotechnol. 2012,2(2):46–57.

Wang Y, He X, Wang K, Zhang X, Tan W: Barbated skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf. B: Biointerfaces 2009,73(1):75–79.

Song JY, Jang HK, Kim BS: Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009,44(10):1133–1138.

Noruzi M, Zare D, Khoshnevisan K, Davoodi D: Rapid green synthesis of gold nanoparticles using Rosa hybrid petal extract at room temperature. Spectrochim. Acta A 2011,79(5):1461–1465.

Das RK, Gogoi N, Bora U: Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioproc. Biosyst. Eng. 2011,34(5):615–619.

Lin L, Wang W, Huang J, Li Q, Sun D, Yang X, Wang H, He N, Wang Y: Nature factory of silver nanowires: plant mediated synthesis using broth of Cassia fistula leaf. Chem. Eng. J. 2010,162(2):852–858.

Cruz D, Fale PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL: Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena), colloid. Surf. B Interf. 2010,81(1):67–73.

Olagbende-Dada SO, Ezeobika FN, Duru FI: Anabolic effect of Hibiscus rosa-sinensis Linn. Leaf extracts in immature albino male rats. Nig. Q. J. Hosp. Med 2007,17(1):5–7.

Sharma S, Sultana S: Effect of Hibiscus rosa-sinensis extract on hyperproliferation and oxidative damage caused by benzoyl peroxide and ultraviolet radiations in mouse skin. Basic Clin. Pharmacol. Toxicol. 2004,95(5):220–225.

Sachdewa A, Khemani LD: A preliminary investigation of the possible hypoglycemic activity of Hibiscus rosa-sinensis . Biomed. Environ. Sci. 1999,12(3):222–226.

Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Kannan C, Annadurai G: Seaweed mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem. 2013,3(44):1–7.

Rajeshkumar S, Kannan C, Annadurai G: Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int. J. Pharm. Bio. Sci. 2012,3(4):502–510.

Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA: Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa . Spectrochim. Acta A 2007, 67: 1003–1006.

Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M: Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum . Chembiochem 2002, 3: 461–463.

Saifuddin N, Wong CW, Yasumira AAN: Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J. Chem. 2009,6(1):61–70.

Philip D, Unni C, Aromal SA, Vidhu VK: Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A 2011, 78: 899–904.

Iosin M, Baldeck P, Astilean S: Study of tryptophan assisted synthesis of gold nanoparticles by combining UV–Vis, fluorescence, and SERS spectroscopy. J. Nanopart. Res. 2010, 12: 2843–2849.

Philip D, Unni C: Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum ) leaf. Phys. E. 2011,43(7):1318–1322.

Mohammed-Fayaz A, Girilal M, Venkatesan R, Kalaichelvan PT: Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloid. Surf B: Biointerf. 2011,88(1):287–291.

Philip D: Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A 2009, 73: 374–381.

Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A: Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava ( Psidium guajava ) leaf extract. Nano Biotechnol. 2009,5(1–4):34–41.