Optimization and in vitro evaluation of ziprasidone nanosuspensions produced by a top-down approach
Tài liệu tham khảo
Müller, 2011, State of the art of nanocrystals - special features, production, nanotoxicology aspects and intracellular delivery, Eur. J. Pharm. Biopharm., 78, 1, 10.1016/j.ejpb.2011.01.007
Gao, 2012, Drug nanocrystals: in vivo performances, J. Control. Release, 160, 418, 10.1016/j.jconrel.2012.03.013
Ahuja, 2015, Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension, Int. J. Pharm., 478, 540, 10.1016/j.ijpharm.2014.12.003
Müller, 2001, Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future, Adv. Drug Deliv. Rev., 47, 3, 10.1016/S0169-409X(00)00118-6
Dolenc, 2009, Advantages of celecoxib nanosuspension formulation and transformation into tablets, Int. J. Pharm., 376, 204, 10.1016/j.ijpharm.2009.04.038
Quan, 2012, A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability, Int. J. Pharm., 430, 366, 10.1016/j.ijpharm.2012.04.025
Chan, 2011, Production methods for nanodrug particles using the bottom-up approach, Adv. Drug Deliv. Rev., 63, 406, 10.1016/j.addr.2011.03.011
Keck, 2006, Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation, Eur. J. Pharm. Biopharm., 62, 3, 10.1016/j.ejpb.2005.05.009
Karakucuk, 2016, Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A Design of Experiment approach, Eur. J. Pharm. Sci., 95, 111, 10.1016/j.ejps.2016.05.010
Bobes, 2004, Economic consequences of the adverse reactions related with antipsychotics: an economic model comparing tolerability of ziprasidone, olanzapine, risperidone, and haloperidol in Spain, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 28, 1287, 10.1016/j.pnpbp.2004.06.017
Brinholi, 2016, Clozapine and olanzapine are better antioxidants than haloperidol, Quetiapine, Risperidone and ziprasidone in in vitro models, Biomed. Pharmacother., 81, 411, 10.1016/j.biopha.2016.02.047
Coplan, 2013, Tardive dyskinesia from atypical antipsychotic agents in patients with mood disorders in a clinical setting, J. Affect. Disord., 150, 868, 10.1016/j.jad.2013.04.053
Thombre, 2015, Pharmacoscintigraphy studies to assess the feasibility of a controlled release formulation of ziprasidone, J. Control. Release, 213, 10, 10.1016/j.jconrel.2015.06.032
Teeranachaideekul, 2008, Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology, Int. J. Pharm., 354, 227, 10.1016/j.ijpharm.2007.11.062
Guo, 2013, Development and in vivo/in vitro evaluation of novel herpetrione nanosuspension, Int. J. Pharm., 441, 227, 10.1016/j.ijpharm.2012.11.039
Verma, 2011, Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening, Int. J. Pharm., 406, 145, 10.1016/j.ijpharm.2010.12.027
George, 2013, Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology, Eur. J. Pharm. Sci., 48, 142, 10.1016/j.ejps.2012.10.004
Oktay, 2018, Dermal flurbiprofen nanosuspensions: optimization with design of experiment approach and in vitro evaluation, Eur. J. Pharm. Sci., 10.1016/j.ejps.2018.07.009
Tuomela, 2016, Production, applications and in vivo fate of drug nanocrystals, J. Drug Deliv. Sci. Technol., 34, 21, 10.1016/j.jddst.2016.02.006
Dewalkar, 2012
Bera, 2015, Mucoadhesive-floating zinc-pectinate-sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl, Carbohydr. Polym., 131, 108, 10.1016/j.carbpol.2015.05.042
Wang, 2013, Stability of nanosuspensions in drug delivery, J. Control. Release, 172, 1126, 10.1016/j.jconrel.2013.08.006
Hong, 2014, Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation, Int. J. Pharm., 477, 251, 10.1016/j.ijpharm.2014.10.044
Chaubal, 2008, Conversion of nanosuspensions into dry powders by spray drying: a case study, Pharm. Res. (N. Y.), 25, 2302, 10.1007/s11095-008-9625-0
Dressman, 2000, In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs, Eur. J. Pharm. Sci., 10.1016/S0928-0987(00)00181-0
Miceli, 2007, The effect of food on the absorption of oral ziprasidone, Psychopharmacol. Bull., 40, 58
Thombre, 2012, In vitro and in vivo characterization of amorphous, nanocrystalline, and crystalline ziprasidone formulations, Int. J. Pharm., 428, 8, 10.1016/j.ijpharm.2012.02.004
Klein, 2010, The use of biorelevant dissolution media to forecast the in vivo performance of a drug, AAPS J., 12, 397, 10.1208/s12248-010-9203-3
Sinha, 2013, Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size, Int. J. Pharm., 453, 126, 10.1016/j.ijpharm.2013.01.019
Zhang, 2010, DDSolver: an add-in program for modeling and comparison of drug dissolution profiles, AAPS J., 12, 263, 10.1208/s12248-010-9185-1
Dening, 2016, Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro, Eur. J. Pharm. Biopharm., 101, 33, 10.1016/j.ejpb.2016.01.010
