Tối ưu hóa và đặc trưng hóa các vật liệu nanocomposite tre bằng acrylonitrile/MAPE/nano-clay thông qua phương pháp bề mặt phản hồi

Polymer Bulletin - Tập 79 - Trang 3031-3059 - 2021
Md.Rezaur Rahman1, Muhammad Adamu1,2, Sinin Hamdan1, Muhammad Khusairy Bin Bakri1, Fahmi Asyadi Bin Md. Yusof3, Afrasyab Khan4
1Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, Kota Samarahan, Sarawak, Malaysia
2Nigerian National Petroleum Corporation, NNPC Corporate Headquarters, Abuja, Nigeria
3Polymer Technology Section, Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysia, Melaka, Malaysia
4Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Chelyabinsk, Russia

Tóm tắt

Tre có sẵn dồi dào và phong phú, nổi tiếng với độ bền và đa dạng công dụng. Trong nghiên cứu này, tác động của acrylonitrile/MAPE/nano-clay lên các vật liệu nanocomposite tre (BNCs) và việc tối ưu hóa chúng đã được đánh giá bằng phương pháp bề mặt phản hồi (RSM). Các BNCs phát triển đã được đặc trưng bằng phương pháp quang phổ hồng ngoại biến đổi Fourier (FTIR), nhiễu xạ tia X (XRD), kính hiển vi điện tử quét (SEM), phân tích nhiệt trọng lượng (TGA) và đo nhiệt chênh lệch quét (DSC) để nghiên cứu tính chất thành phần, hình thái và nhiệt của chúng. Dựa trên các BNCs, các mô hình bề mặt phản hồi đã được xây dựng để dự đoán mô đun đàn hồi (MOE) và mô đun gãy (MOR) của các BNCs. Các mô hình phát triển đã phù hợp với các giá trị thí nghiệm với R2 gần 1 và đồ thị xác suất bình quân các phần dư được điều chỉnh thành đường thẳng. Theo các mô hình, các giá trị MOE và MOR tối ưu của BNCs cao hơn so với tre thô. Hình ảnh từ kính hiển vi điện tử quét (SEM) cho thấy việc xử lý trên BNC 8/12/60 đã tạo ra một bề mặt thô và loại bỏ hemicellulose trên bề mặt tre, điều này đã cải thiện các tính chất hình thái, trong khi kết quả XRD trên BNC 1/12/60 cho thấy sự tăng cường vùng tinh thể so với vùng vô định hình, điều này xảy ra do thời gian ngâm tẩm dài hơn. Nhiệt độ nóng chảy và phân hủy của các BNCs cao hơn so với tre thô như được chỉ ra bởi kết quả TGA và DSC. Dự kiến rằng các BNCs được phát triển có thể cạnh tranh với các vật liệu hybrid nanomaterial truyền thống với khả năng lớn để phát triển thành các nanocomposite thân thiện với môi trường được sử dụng trong các ứng dụng xây dựng nội thất và ngoại thất.

Từ khóa

#bamboo nanocomposites #acrylonitrile #MAPE #nano-clay #optimization #response surface methodology

Tài liệu tham khảo

Verma D, Senal I (2019) Natural fiber-reinforced polymer composites. Biomass, Biopolymer-Based Mater Bioener: Constr Biomed Ind Appl. https://doi.org/10.1016/B978-0-08-102426-3.00006-0 Bansal S, Ramachandran M, Raichurkar P (2017) Comparative analysis of bamboo using jute and coir fiber reinforced polymeric composites. Mater Today: Proc 4(2):3182–3187. https://doi.org/10.1016/j.matpr.2017.02.203 Arifur Rahman M, Parvin F, Hasan M, Hoque ME (2015) Introduction to Manufacturing of Natural Fibre-Reinforced Polymer Composites. Manuf Nat Fibre Reinforc Polym Comps. https://doi.org/10.1007/978-3-319-07944-8_2 Fan M, Fu F (2016) Advanced High Strength Natural Fibre Composites in Construction. Adv High Strength Nat Fibre Compos Constr. https://doi.org/10.1016/c2014-0-03942-1 Nakato T, Miyamoto N (2009) Liquid crystalline behavior and related properties of colloidal systems of inorganic oxide nanosheets. Materials 2(4):1734–1761 Nieddu E, Mazzucco L, Gentile P, Benko T, Balbo V, Mandrile R, Ciardelli G (2009) Preparation and biodegradation of clay composites of PLA. React Funct Polym 69(6):371–379 Patel RH, Patel K (2014) Synthesis of flame retardant polyester-urethanes and their applications in nanoclay composites and coatings. Polym Int 63(3):529–536 Saba N, Jawaid M, Asim M (2016) Recent advances in nanoclay/natural fibers hybrid composites. In: Jawaid M, Qaiss A, Bouhfid R (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials, Springer, Singapore, pp 1–28 Mondal MIH, Islam MK (2015) Dyeing and thermal behavior of jute fibre grafted with nitrile monomer. Fash Text 12(2):1–12 Samal RK, Samantaray HS, Samal RN (1986) Graft copolymerization with a new class of acidic peroxo salts as initiator. V. Grafting of methyl methacrylate onto jute fiber using potassium monopersulfate catalyzed by Fe(II). Polym J 18:471–478 Samal RK, Dash S, Swain AK (1989) Graft copolymerization of methyl acrylamide on to jute fibers initiated by peroxydisulfate catalysed by Fe(III). Polym J 21:821–828 Hebeish A, Mehata PC (1968) Cerium-initiated grafting of acrylonitrile on to cellulosic material. J Appl Polym Sci 12:625–1647 Mengeloglu F, Karakus K (2008) Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors 8:500–519 Adamu M, Rahman R, Hamdan S, Khusairy M, Bakri B, Asyadi F, Yusof B (2020) Impact of polyvinyl alcohol / acrylonitrile on bamboo nanocomposite and optimization of mechanical performance by. Constr Build Mater 258:119693. https://doi.org/10.1016/j.conbuildmat.2020.119693 Hassan MZ, Sapuan SM, Roslan SA, Aziz SA, Sarip S (2019) Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. J Mater Res Technol 8(4):3517–3528. https://doi.org/10.1016/j.jmrt.2019.06.026 Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR (2019) Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB 2-based composite nanofibers. Comp Part B: Eng 166(Ccd), 527–541. https://doi.org/10.1016/j.compositesb.2019.01.094 Daneshpayeh S, Ashenai Ghasemi F, Ghasemi I, Ayaz M (2016) Predicting of mechanical properties of PP/LLDPE/TiO<inf>2</inf> nano-composites by response surface methodology. Compos B Eng 84:109–120. https://doi.org/10.1016/j.compositesb.2015.08.075 Adamu M, Rahman M, Unstr R, Hamdan S (2019). Formulation optimization and characterization of bamboo/polyvinyl alcohol/clay nanocomposite by response surface methodology. Comp Part B: Eng 107297. https://doi.org/10.1016/j.compositesb.2019.107297 Ashenai Ghasemi F, Ghasemi I, Menbari S, Ayaz M, Ashori A (2016) Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polym Test. https://doi.org/10.1016/j.polymertesting.2016.06.012 Zakikhani P, Zahari R, Sultan MTH, Majid DL (2016) Thermal degradation of four bamboo species. BioRes 11(1):414–425 Sugiman S, Setyawan PD, Anshari B (2019) Effects of alkali treatment of bamboo fibre under various conditions on the tensile and flexural properties of bamboo fibre/polystyrene-modified unsaturated polyester composites. J Eng Sci Technol 14(1):26–46 Borthakur RD, Gogoi PK (2014) Studies of dimensional stability, thermal stability and biodegradation resistance capacity of chemically treated bamboo. Asian J Biochem 9:16–29 ASTM D7264/D7264M-15, 2007. Standard test method for flexural properties of polymer matrix composite materials. ASTM International. Karoui S, Ben Arfi R, Mougin K, Ghorbal A, Assadi A, Amrane A (2019) Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models. J Hazard Mater 387(1):121675 Karoui S, Ben Arfi R, Fernandez-Sanjurjo MJ, Nunez-Degado A, Ghorabal A, Alvarez-Rodriguez E (2020) Optimization of synergistic biosorption of oxytetracycline and cadmium from binary mixtures on reed-based beads: modeling study using Brouers-Sotolongo models. Environ Sci Pollut Res 1(1):1–17 John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364 George M, Paolo GM, Abboud Z, Bressler DC (2014) Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy. Appl Surf Sci 314:1–7 Sreenivasulu S, Reddy AC (2014) Mechanical properties evalution of bamboo fiber reinforced composite materials. Int J Eng Res 3(1):187–194 Abdullah AHD, Karlina N, Rahmatiya W, Mudaim S, Patimah Fajrin AR (2017) Physical and mechanical properties of five Indonesian bamboos. IOP Conf Ser: Earth Environ Sci 60(1):1–5 Rahman MR, Hamdan S, Islam MS, Ahmed AS (2012) Influence of nanoclay/phenol formaldehyde resin on wood polymer nanocomposites. J Appl Sci 12(14):1481–1487 Liew FK, Hamdan S, Rahman MR, Mahmood MR, Rahman MM, Lai JCH, Sultan MT (2016) 4-methylcatechol-treated jute-bamboo hybrid composites: effects of pH on thermo-mechanical and morphological properties. BioResources 11(3):6880–6895 Sukmawan R, Takagi H, Nakagaito AN (2016) Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos B Eng 84:9–16 Nguyen HD, Mai TTT, Nguyen NB, Dang TD, Le MLP, Dang TT, Tran VM (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci: Nanosci Nanotechnol 4:1–9 Liew FK, Hamdan S, Rahman MR, Rusop M (2017) Thermomechanical properties of jute/bamboo cellulose composite and its hybrid composites: the effects of treatment and fiber loading. Adv Mater Sci Eng 1:1–10 Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibers produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80(3):852–859 Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate 346(1):76–85 Gulmine J, Janissek P, Heise H, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Testing 21:557–563 Morent R, Geyter ND, Leys C (2008) Effects of operating parameters on plasma-induced PET surface treatment. Nucl Instrum Methods Phy Res B 266:3081–3085 Chen H, Yu Y, Zhong T, Wu Y, Li Y, Wu Z, Fei B (2017) Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 24:333–347 Zhang K, Fangxin W, Liang W, Wang Z, Duan Z, Yang B (2018) Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers 10(6):1–18 Wang F, Shao J, Keer LM, Li L, Zhang J (2015) The effect of elementary fibre variability on bamboo fibre strength. Mater Des 75:136–142 Bakri MKB, Rahman MR, Hamdan S, Nyuk Khui PL, Jayamani E, Kakar A (2019) Infrared spectral functional group and thermal properties of acacia wood bio-composites. In: Rahman MR (ed) Acacia Wood bio-composites: towards bio-sustainability of the environment, pp. 135–151. https://doi.org/10.1007/978-3-030-29627-8_6 Zhong L, Fu S, Li F, Zhan H (2010) Chlorine dioxide treatment of sisal fibre: surface lignin and its influences on fibre surface characteristics and interfacial behaviour of sisal fibre/phenolic resin composites. BioResources 5:2431–2446 Rao HR, Indraja Y, Bai GM (2014) Flexural properties and SEM analysis of bamboo and glass fiber reinforced epoxy hybrid. J Mech Civ Eng 11(2):39–42 Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788 Ben Arfi R, Karoui S, Mougin K, Ghorbal A (2018) Cetyltrimethylammonium bromide-treated Phragmites australis powder as novel polymeric adsorbent for hazardous Eriochrome Black T removal from aqueous solutions. Polym Bull 78(1):5077–5102 Maaloul N, Oulego P, Rendueles M, Ghorbal A, Diaz M (2020) Enhanced Cu(II) adsorption using sodium trimetaphosphate–modified cellulose beads: equilibrium, kinetics, adsorption mechanisms, and reusability. Environ Sci Pollut Res 1(1):1–17 Varma AK, Mondal P (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Res Technol 138(5):1–11 Rahman MR, Hamdan S, Lai JCH (2017) Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of wood polymer nanocomposites. MATEC Web Conf 87:1–5 Razali N, Salit MS, Jawaid M, Ishak MR, Lazim Y (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10(1):1803–1823 Azwa ZN, Yousif BF (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab 98(12):2752–2759 Bozkurt E, Kaya E, Tanoglu M (2007) Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Compos Sci Technol 67:3394–3403 Hamdan S, Rahman MR, Ahmed AS, Talib ZA, Islam MS (2010) Influence of N, N-dimethylacetamid on the thermal and mechanical properties of polymer-filled wood. BioResources 5(4):2611–2624 Xiong H, Tang S, Tang H, Zou P (2008) The structure and properties of a starch -based biodegradable film. Carbohydr Poly 71:263–268 Piyada K, Waranyou S, Thawien W (2013) Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. Int Food Res J 20(1):439–449 Mulinari DR, Voorwald HJC, Cioffi MOH, Rocha GJ, Da Silva MLCP (2010) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. BioResources 5(2):661–671 Du Z, Zhang L, Xu Y (2015) Characterization of structure and property of the monocarboxyl bamboo pulp fibers. Mater Sci Appl 6:279–285 Cheng Q, Wang S, Timothy GR, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602 Jiang F, Hsieh Y-L (2014) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohyd Polym 122(1):60–68 Pang J, Wu M, Zhang Q, Tan X, Xu F, Zhang X, Sun R (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohyd Polym 121(1):71–78 Dolati S, Fereidoon A, Sabet AR (2013) Hail impact damage behaviors of glass fiber reinforced epoxy filled with nanoclay. J Compos Mater 1–9