Optimization and Operations Research in Mitigation of a Pandemic
Tóm tắt
The pandemic of COVID-19 initiated in 2019 and spread all over the world in 2020 has caused significant damages to the human society, making troubles to all aspects of our daily life. Facing the serious outbreak of the virus, we consider possible solutions from the perspectives of both governments and enterprises. Particularly, this paper discusses several applications of supply chain management, public resource allocation, and pandemic prevention using optimization and machine learning methods. Some useful insights in mitigating the pandemic and economy reopening are provided at the end of this paper. These insights might help governments to reduce the severity of the current pandemic and prevent the next round of outbreak. They may also improve companies’ reactions to the increasing uncertainties appearing in the business operations. Although the coronavirus imposes challenges to the entire society at the moment, we are confident to develop new techniques to prevent and eradicate the disease.
Tài liệu tham khảo
citation_journal_title=Op. Res.; citation_title=Distributionally robust optimization under moment uncertainty with application to data-driven problems; citation_author=E Delage, Y Ye; citation_volume=58; citation_issue=3; citation_publication_date=2010; citation_pages=595-612; citation_doi=10.1287/opre.1090.0741; citation_id=CR1
citation_journal_title=Math. Program.; citation_title=Data-driven robust optimization; citation_author=D Bertsimas, V Gupta, N Kallus; citation_volume=167; citation_issue=2; citation_publication_date=2017; citation_pages=235-292; citation_doi=10.1007/s10107-017-1125-8; citation_id=CR2
citation_journal_title=Math. Program.; citation_title=Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations; citation_author=PM Esfahani; citation_volume=171; citation_publication_date=2018; citation_pages=115-166; citation_doi=10.1007/s10107-017-1172-1; citation_id=CR3
citation_journal_title=J. Econ. Dyn. Control; citation_title=Systemic risk, financial contagion and financial fragility; citation_author=S Martínez-Jaramillo, OP Pérez, FAD Embriz, G Lopez; citation_volume=34; citation_issue=11; citation_publication_date=2010; citation_pages=2358-2374; citation_doi=10.1016/j.jedc.2010.06.004; citation_id=CR4
citation_journal_title=Annal. Math.; citation_title=The kissing number in four dimensions; citation_author=OR Musin; citation_volume=35; citation_publication_date=2008; citation_pages=1-32; citation_doi=10.4007/annals.2008.168.1; citation_id=CR5
citation_journal_title=J. Am. Math. Soc.; citation_title=New upper bounds for kissing numbers from semidefinite programming; citation_author=C Bachoc, F Vallentin; citation_volume=21; citation_issue=3; citation_publication_date=2008; citation_pages=909-924; citation_doi=10.1090/S0894-0347-07-00589-9; citation_id=CR6
citation_journal_title=Optim. Lett.; citation_title=On an SDP relaxation for kissing number; citation_author=J Lee, L Liberti; citation_volume=14; citation_issue=2; citation_publication_date=2020; citation_pages=417-422; citation_doi=10.1007/s11590-018-1239-9; citation_id=CR7
citation_journal_title=SIAM J. Comput.; citation_title=An approximation algorithm for the maximum independent set problem on planar graphs; citation_author=N Chiba, T Nishizeki, N Saito; citation_volume=11; citation_issue=4; citation_publication_date=1982; citation_pages=663-675; citation_doi=10.1137/0211055; citation_id=CR8
citation_journal_title=Discr. Appl. Math.; citation_title=New formulations for the kissing number problem; citation_author=S Kucherenko, P Belotti, L Liberti, N Maculan; citation_volume=155; citation_issue=14; citation_publication_date=2007; citation_pages=1837-1841; citation_doi=10.1016/j.dam.2006.05.012; citation_id=CR9
citation_journal_title=Optim. Methods Softw.; citation_title=Semidefinite relaxation and nonconvex quadratic optimization; citation_author=Y Nesterov; citation_volume=9; citation_issue=1–3; citation_publication_date=1998; citation_pages=141-160; citation_doi=10.1080/10556789808805690; citation_id=CR10
citation_journal_title=IEEE Signal Process. Magaz; citation_title=Ye, Y, Zhang, S: Semidefinite relaxation of quadratic optimization problems; citation_author=Z-Q Luo, W-K Ma, A-C So; citation_volume=27; citation_issue=3; citation_publication_date=2010; citation_pages=20-34; citation_doi=10.1109/MSP.2010.936019; citation_id=CR11
citation_journal_title=Math. Program.; citation_title=Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix cone decomposition and polyhedral approximation; citation_author=XJ Zheng, X Sun, LD Ling; citation_volume=129; citation_issue=2; citation_publication_date=2011; citation_pages=301-329; citation_doi=10.1007/s10107-011-0466-y; citation_id=CR12
citation_journal_title=IEEE Trans. Inf. Theory; citation_title=On the Shannon capacity of a graph; citation_author=L Lovasz; citation_volume=25; citation_issue=1; citation_publication_date=1979; citation_pages=1-7; citation_doi=10.1109/TIT.1979.1055985; citation_id=CR13
citation_title=Improved approximation guarantees through higher levels of SDP hierarchies: A pproximation, randomization and combinatorial optimization. Algorithms and Techniques; citation_publication_date=2008; citation_id=CR14; citation_author=E Chlamtac; citation_author=G Singh; citation_publisher=Springer
Wilson,Aaron T.:Applying the boundary point method to an SDP relaxation of the maximum independent set problem for a branch and bound algorithm. PhD thesis, New Mexico Institute of Mining and Technology (2009)
Biswas,P, Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In:Proceedings of the 3rd international symposium on Information processing in sensor networks, pages 46–54 (2004)
citation_journal_title=SIAM J. Optim.; citation_title=Further relaxations of the semidefinite programming approach to sensor network localization; citation_author=Z Wang, S Zheng, Y Ye, S Boyd; citation_volume=19; citation_issue=2; citation_publication_date=2008; citation_pages=655-673; citation_doi=10.1137/060669395; citation_id=CR17
Wang, Z, Ding, Y.:Real-time tracking for sensor networks via sdp and gradient method. In Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments, pages 109–112 (2008)
citation_journal_title=ACM Trans. Algorithms; citation_title=Finding equitable convex partitions of points in a polygon efficiently; citation_author=JG Carlsson, B Armbruster, Y Ye; citation_volume=6; citation_issue=4; citation_publication_date=2010; citation_pages=1-19; citation_doi=10.1145/1824777.1824792; citation_id=CR19
citation_journal_title=J. ACM; citation_title=Market equilibrium via a primal-dual algorithm for a convex program; citation_author=NR Devanur, CH Papadimitriou, A Saberi, VV Vazirani; citation_volume=55; citation_issue=5; citation_publication_date=2008; citation_pages=2541; citation_doi=10.1145/1411509.1411512; citation_id=CR20
Jalota, D, Pavone, M, Ye Y.: Markets for efficient public good allocation (2020).
http://arxiv.org/abs/2005.10765
citation_journal_title=Math. Biosci.; citation_title=On the benefits of flattening the curve: a perspective; citation_author=Z Feng, JW Glasser, AN Hill; citation_volume=364; citation_publication_date=2020; citation_pages=108389; citation_doi=10.1016/j.mbs.2020.108389; citation_id=CR22
Jordan, Rachel E., Adab, P, Cheng KK.:Covid-19: risk factors for severe disease and death, BMJ (2020).
https://doi.org/10.1136/bmj.m1198