Optimised gravity anomaly fields from along-track multi-mission satellite altimeter over Malaysian seas

Nornajihah Mohammad Yazid1, Ami Hassan Md Din1, Abdullah Hisam Omar2, Nazirah Mohamad Abdullah3, Muhammad Faiz Pa’suya4, Mohammad Hanif Hamden1, Noor Anim Zanariah Yahaya1
1Geospatial Imaging and Information Research Group (GI2RG), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
2Geomatics Innovation Research Group (GnG), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
3Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
4Environment and Climate Change Reseach Group (ECCG), Faculty of Architecture, Universiti Teknologi MARA, Planning & SurveyingPerlis, Arau Campus, 02600, Arau, Perlis, Malaysia

Tóm tắt

AbstractMarine gravity anomalies are crucial parameters and elements for determining coastal and ocean geoid, tectonics and crustal structures, as well as offshore studies. This study aims to derive and develop a marine gravity anomaly model over Malaysian seas from multi-mission altimetry data. Universiti Teknologi Malaysia 2020 Mean Sea Surface Model is computed based on along-track data from nine satellite missions, incorporating TOPEX, Jason-1, Jason-2, ERS-2, Geosat Follow on (GFO), Envisat-1, CryoSat-2, SARAL/AltiKa, and Sentinel-3A. The data exploited are from 1993 to 2019 (27 years). Residual gravity anomaly is computed using Gravity Software, and two-dimensional planar Fast Fourier Transformation method is applied. The evaluation, selection, blunder detection, combination, and re-gridding of the altimetry-derived gravity anomalies and Global Geopotential Model data are demonstrated. Cross-validation procedure is employed for data cleaning and quality control using the Kriging interpolation method. Then, cross-validation procedure is applied to the tapering window width 200, which adopting the GECO model denotes the optimum gravity anomaly with root mean square errors in the range of ± 4.2472 mGal to ± 6.0202 mGal. The findings suggest that the estimated marine gravity anomaly is acceptable to be implemented in the marine geoid determination and bathymetry estimation over Malaysian seas. In addition, the results of this study are valuable for geodetic and geophysical applications in marine areas.

Từ khóa


Tài liệu tham khảo

Andersen OB (2013) Marine Gravity and Geoid from Satellite Altimetry. In: Sanso F, Sideris MG (eds) Geoid Determination: Theory and Methods. Springer, Heidelberg, pp 401–451

Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103(C4):8129–8137

Andersen, O. B., G. Piccioni, L. Stenseng, and P. Knudsen, 2015: The DTU15 Mean Sea Surface and Mean Dynamic Topography-Focusing on Arctic Issues and Development.” in Oral Presentation, in the 2015 OSTST Meeting, Virginia, USA. Editors P. Bonnefond, J. Willis, and Reston https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST2015/GEO-03-Andersen_MSSH_OSTST.pdf (Accessed October 29, 2020)

Andritsanos VD (2000) Optimum combination of terrestrial and satellite data with the use of spectral techniques for applications in geodesy and oceanography. Doctor Philosophy. Department of Geodesy & Surveying School of Rural and Surveying Engineering Faculty of Engineering The Aristotle University of Thessaloniki

Barthelmes F, Köhler W (2012) International Centre for Global Earth Models (ICGEM). J Geodesy 86(10):932–934

Barthelmes F (2013) Definition of functionals of the geopotential and their calculation from spherical harmonic models. Scientific technical Rep STR09/02. German Research Centre for Geosciences (GFZ), Potsdam, Germany

Bingham C, Godfrey M, Tukey J (1967) Modern techniques of power spectrum estimation. IEEE Trans Audio Electroacoustic 15(2):55–66

Bjerhammar A (1973) Theory of Errors and Generalized Matrix Inverses. Elsevier

Boergens E, Dettmering D, Seitz F (2019) Observing water level extremes in the Mekong River Basin: The benefit of long-repeat orbit missions in a multi-mission satellite altimetry approach. J Hydrolo. 570:463

Bogusz J, Brzezinski A, Kosek W, Nastula J (2015) Earth rotation and geodynamics. Geodesy Cartography 64(2):201–242. https://doi.org/10.1515/geocart-2015-0013

Bracewell RN (2000) The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, New York

Bruinsma SL, Forste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(14):3607–3612. https://doi.org/10.1002/grl.50716

Din AHM, Ses S, Omar K, Naeije M, Yaakob O, Pa’suya MF, (2014) Derivation of sea level anomaly based on the best range and geophysical corrections for Malaysian seas using radar altimeter database system (RADS). Jurnal Teknologi 71(4):83–91. https://doi.org/10.11113/jt.v71.3830

Din AHM, Zulkifli NA, Hamden MH, Aris WAW (2019) Sea level trend over Malaysian seas from multi-mission satellite altimetry and vertical land motion corrected tidal data. Adv Space Res 63(11):3452–3472. https://doi.org/10.1016/j.asr.2019.02.022

Fan D, Li S, Li X, Yang J, Wan X (2021) 2021: Seafloor Topography Estimation from Gravity Anomaly and Vertical Gravity Gradient Using Nonlinear Iterative Least Square Method. Remote Sens 13:64. https://doi.org/10.3390/rs13010064

Forsberg R, Tscherning CC (2008) An overview manual GRAVSOFT Geodetic Gravity Field Modelling Programs

Geisser S, Eddy WF (1979) A predictive approach to model selection. J Am Stat Assoc 74(365):153–160

Gilardoni M, Reguzzoni M, Sampietro D (2016) GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod 60:228–247. https://doi.org/10.1007/s11200-015-1114-4

Hamden MH, Din AHM, Wijaya DD, Yusoff MYM, M. F. Pa’suya, (2021) Regional mean sea surface and mean dynamic topography models around malaysian seas developed from 27 years of along-track multi-mission satellite altimetry data. Front Earth Sci 9:665876. https://doi.org/10.3389/feart.2021.665876

Hamid AIA, Din AHM, Hwang C, Khalid NF, Tugi A, Omar KM (2018) Contemporary sea level rise rates around Malaysia: Altimeter data optimization for assessing coastal impact. J Asian Earth Sci 166:247–259. https://doi.org/10.1016/j.jseaes.2018.07.034

Haxby WF, Karner GD, Labrecque JL (1983) Digital images of combined oceanic and continental data sets and their use in tectonic studies. EOS Trans Am Geophys Union 64:995–1004

Hwang C (1998) Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea. J Geod 72(5):304–312

Karpik AP, Kanushin VF, Ganagina IG, Goldobin DN, Kosarev NS, Kosareva AM (2016) Evaluation of recent Earth’s global gravity field models with terrestrial gravity data. Contributions Geophys Geodesy 46(1):1–11. https://doi.org/10.1515/congeo-2016-0001

Kiamehr R (2010) Practical Concepts in Geoid Modelling with Geophysical and Geodynamical Interpretations. LAP Lambert Academic Publishing, Saarbrucken

Knudsen P (1993) Integration of Gravity and Altimetry Data by Optimal Estimation Techniques. In Satellite Altimetry for Geodesy and Oceanography, Lecture Notes in Earth Sciences No 50:453–466

Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metal Mining Soc South Africa 52(6):119–139

Liu L, Jiang X, Liu S, Zheng L, Zang J, Zhang X, Liu L (2016) Calculating the marine gravity anomaly of the South China Sea based on the inverse stokes formula. Earth Environ Sci 46:012062. https://doi.org/10.1088/1755-1315/46/1/012062

Moritz H (1972) Advanced Least-Squares Methods, Dept of Geodetic Science, OSU. Report No 175:1972

Nguyen V, Pham V, Nguyen LV, Andersen OB, Forsberg R, Bui DT (2020) Marine gravity anomaly mapping for the Gulf of Tonkin area (Vietnam) using Cryosat-2 and Saral/AltiKa satellite altimetry data. Adv Space Res 66(2020):505–519. https://doi.org/10.1016/j.asr.2020.04.051

Pilz M, Parolai S, Picozzi M, Bindi D (2012) Three-dimensional shear wave velocity imaging by ambient seismic noise tomography. Geophys J Int 189(1):501–512. https://doi.org/10.1111/j.1365-246X.2011.05340.x

Rapp RH (1979) Geos 3 data processing for the recovery of geoid undulations and gravity anomalies. J Geophys Res 84(B8):3784–3792

Salam NA (2005) Kajian Ramalan Kedalaman Laut Menggunakan Anomali Graviti Marin daripada Satelit Radar Altimeter. Msc Thesis. Universiti Teknologi Malaysia

Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS1 satellite altimetry. J Geophys Res 102(B5):10039–10054

Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. https://doi.org/10.1126/science.1258213

Scharroo R, Leuliette E, Lillibridge J, Byrne D (2012) RADS: Consistent multi-mission products. Symposium on 20 Years of Progress in Radar Altimetry, 1, 5–8. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:RADS+:+CONSISTENT+MULTI-MISSION+PRODUCTS#0

Smith SW (2003) “CHAPTER 15 – Moving Average Filters. In: Digital Signal Processing. Smith SW, ed. (Elsevier Science: Newnes Press), 277–284. doi:https://doi.org/10.1016/b978-0-7506-7444-7/50052-2

Sulaiman SA (2016) Gravimetric Geoid Model Determination for Peninsular Malaysia Using Least Squares Modification of Stokes, Doctor Philosophy. Universiti Teknologi Mara, Shah Alam

Tanaka Y, Yu Y, Chao BF (2019) Gravity and geoid changes by the 2004 and 2012 Sumatra earthquakes from satellite gravimetry and ocean altimetry. Terr Atmos Ocean Sci 30:531–540. https://doi.org/10.3319/TAO.2018.10.24.02

Tziavos IN, Forsberg R, Sideris MG, Andritsanos VD (1997) A comparison of satellite altimetry methods for the recovery of gravity field quantities. In: Forsberg R, Feissel M, Diestrich R (eds) IAG Symposia. Springer, Berlin

Tziavos IN, Forsberg R, Sideris MG (1998) Marine Gravity Field Modelling Using Shjipborne and Geodetic Missions Altimetry Data. Geomatics Research Australasia, No 69:1–18

Urban TJ, Schutz BE, Neuenschwander AL (2008) 2008: A Survey of ICESat Coastal Altimetry Applications: Co Open Ocean Island, and Inland River. Terr Atmos Ocean Sci 19(1–2):1–19. https://doi.org/10.3319/TAO.2008.19.1-2.1(SA)

Vergos GS (2002) Sea Surface Topography, Bathymetry and Marine Gravity Field Modelling, UCGE Reports Number 20157. Univeristy of Calgary, Canada

Vermeer M (1992) A frequency domain approach to optimal geophysical gridding. Manuscr Geodaet 17:141–154

Wu Y, He X, Luo Z, Shi H (2021) An Assessment of Recently Released High-Degree Global Geopotential Models Based on Heterogeneous Geodetic and Ocean Data. Front Earth Sci 9:749611. https://doi.org/10.3389/feart.2021.749611

Yahaya NAZ, Musa TA, Omar KM, Din AHM, Omar AH, Tugi A, Yazid NM (2016) Mean Sea Surface (MSS) Model Determination for Malaysian Seas Using Multi-mission Satellite Altimeter. Arch Photogramm Remote Sens Spat Inf Sci Int 42:247–252. https://doi.org/10.5194/isprs-archives-XLII-4-W1-247-2016

Yahaya NAZ, Musa TA, Omar KM, Din AHM, Omar AH, Tugi A, Yazid NM, Abdullah NM, Wahab MIA (2016) Mean sea surface (MSS) model determination for Malaysian seas using multi-mission satellite altimeter. International Archives of the Photogrammetry. Rem Sens Spatial Inform Sci 42:247–252. https://doi.org/10.5194/isprs-archives-XLII-4-W1-247-2016

Yazid NM, Din AHM, Omar KM, Som ZAM, Omar AH, Yahaya NAZ, Tugi A (2016) Marine Geoid Undulation Assessment over South China Sea Using Global Geopotential Models and Airborne Gravity Data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 4:253–263

Yuan J, Guo J, Liu X, Zhu C, Niu Y, Li Z (2020) Mean Sea Surface Model over China Seas and its Adjacent Ocean Established with the 19-year Moving Average Method from Multi-Satellite Altimeter Data. Continental Shelf Res 192:104009. https://doi.org/10.1016/j.csr.2019.104009

Zhang S, Sandwell DT, Jin T, Li D (2016) Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. J Appl Geophys 137(2017):128–137. https://doi.org/10.1016/j.jappgeo.2016.12.014

Zulkifle MI, Din AHM, Hamden MH, Adzmi NHM (2019) Determination of a localized mean sea surface model for Malaysian seas using multi-mission Satellite Altimeter. ASM Science Journal 12(2):81–89