Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions
Tóm tắt
In this paper, we will study optimality conditions of semi-infinite programs and generalized semi-infinite programs by employing lower order exact penalty functions and the condition that the generalized second-order directional derivative of the constraint function at the candidate point along any feasible direction for the linearized constraint set is non-positive. We consider three types of penalty functions for semi-infinite program and investigate the relationship among the exactness of these penalty functions. We employ lower order integral exact penalty functions and the second-order generalized derivative of the constraint function to establish optimality conditions for semi-infinite programs. We adopt the exact penalty function technique in terms of a classical augmented Lagrangian function for the lower-level problems of generalized semi-infinite programs to transform them into standard semi-infinite programs and then apply our results for semi-infinite programs to derive the optimality condition for generalized semi-infinite programs. We will give various examples to illustrate our results and assumptions.
Tài liệu tham khảo
Krabs, W.: Optimization and Approximation. Translated from the German by Philip M. Anselone and Ronald B. Guenther. A Wiley-Interscience Publication, Chichester (1979)
Hettich, R., Kortanek, K.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)
Polak, E.: Optimization: algorithms and consistent approximations. Appl. Math. Sci. 124. Springer-Verlag, New York (1997)
Reemtsen, R., Rückmann, J.-J. (eds.): Semi-Infinite Programming. Nonconvex Optim. Appl. 25. Kluwer Academic Publishers, Boston, MA (1998)
Goberna, M.Á., López, M.A. (eds.): Semi-Infinite Programming: Recent Advances. Nonconvex Optim. Appl. 57. Kluwer Academic Publishers, Dordrecht (2001)
Jongen, H.T., Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Program. 83, 145–158 (1998)
Stein, O.: Bi-level Strategies for Semi-Infinite Programming. Kluwer Academic Publishers, Boston (2003)
Still, G.: Generalized semi-infinite programming: theory and methods. Eur. J. Oper. Res. 119, 301–313 (1999)
John, F.: Extremum problems with inequalities as subsidiary conditions. In: Friederichs, K.O., Neugebauer, O.E., Stocker, J.J. (eds.) Studies and Essays, Courant Anniversary Volume, pp. 187–204. Wiley, New York (1948)
Pschenichnyi, B.N.: Necessary Conditions for an Extremum. Marcel Dekker, New York (1971)
Hettich, R., Jongen, H.T.: Semi-infinite programming: conditions of optimality and applications. In: Optimization techniques (Proceedings of the 8th IFIP Conference, Würzburg, 1977), Part 2, Lecture Notes in Control Information. Sci. 7, pp. 1–11. Springer, Berlin (1978)
Borwein, J.M.: Direct theorems in semi-infinite convex programming. Math. Program. 21, 301–318 (1981)
Li, W., Nahak, C., Singer, I.: Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 31–52 (2000)
López, M.A., Vercher, E.: Optimality conditions for nondifferentiable convex semi-infinite programming. Math. Program. 27, 307–319 (1983)
Stein, O.: On constraint qualifications in nonsmooth optimization. J. Optim. Theory Appl. 121, 647–671 (2004)
Zheng, X.Y., Yang, X.Q.: Lagrange multipliers in nonsmooth semi-infinite optimization problems. Math. Oper. Res. 32, 168–181 (2007)
Weber, G.-W.: Generalized semi-infinite optimization: on some foundations. Vychisl. Tekhnol. 4, 41–61 (1999)
Rückmann, J.J., Shapiro, A.: First-order optimality conditions in generalized semi-infinite programming. J. Optim. Theory Appl. 101, 677–691 (1999)
Stein, O.: First-order optimality conditions for degenerate index sets in generalized semi-infinite optimization. Math. Oper. Res. 26, 565–582 (2001)
Ye, J.J., Wu, S.Y.: First order optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory Appl. 137, 419–434 (2008)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1983)
Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991)
Yang, X.Q., Meng, Z.Q.: Lagrange multipliers and calmness conditions of order \(p\). Math. Oper. Res. 32, 95–101 (2007)
Meng, K.W., Yang, X.Q.: Optimality conditions via exact penalty functions. SIAM J. Optim. 20, 3208–3231 (2010)
Rubinov, A., Yang, X.Q.: Lagrange-type Functions in Constrained Nonconvex Optimization. Kluwer Academic Publishers, Dordrecht (2003)
Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003)
Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control 12, 268–285 (1974)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
Pietrzykowski, T.: A generalization of the potential method for conditional maxima on the Banach, reflexive spaces. Numer. Math. 18, 367–372 (1971/72)
Conn, A.R., Gould, N.I.M.: An exact penalty function for semi-infinite programming. Math. Program. 37, 19–40 (1987)
Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Levitin, E.S.: Reduction of generalized semi-infinite programing problems to semi-infinite or piece-wise smooth programming problems. Preprint, 8-2001, University of Trier (2001)
Polak, E., Royset, J.O.: On the use of augmented Lagrangians in the solution of generalized semi-infinite min-max problems. Comput. Optim. Appl. 31, 173–192 (2005)
Royset, J.O., Polak, E., Der Kiureghian, A.: Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems. SIAM J. Optim. 14, 1–33 (2003)
Lang, S.: Real and Functional Analysis Volume 142 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (1993)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)
Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789–809 (1990)
Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized hessian matrix and second-order optimality conditions for problems with \({C}^{1,1}\) data. Appl. Math. Optim. 11, 43–56 (1984)
Yang, X.Q.: Generalized second-order derivatives and optimality conditions. Nonlinear Anal. 23, 767–784 (1994)
Burachik, R.S., Rubinov, A.: Abstract convexity and augmented Lagrangians. SIAM J. Optim. 18, 413–436 (2007)
Nedic, A., Ozdaglar, A.: Separation of nonconvex sets with general augmenting functions. Math. Oper. Res. 33, 587–605 (2008)