Optimality Conditions and Duality for Multiobjective Semi-infinite Programming on Hadamard Manifolds

Lê Thanh Tùng1, Dang Hoang Tam1
1Department of Mathematics, College of Natural Sciences, Can Tho University, Can Tho, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

Barani, A.: Convexity of the solution set of a pseudoconvex inequality in Riemannian manifolds. Numer. Funct. Anal. Optim. 39, 588–599 (2018)

Barani, A., Hosseini, S.: Characterization of solution sets of convex optimization problems in Riemannian manifolds. Arch. Math. 114, 215–225 (2020)

Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

Bergmann, R., Herzog, R.: Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds. SIAM J. Optim. 29, 2423–2444 (2019)

Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York (2010)

Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 42, 1455–1459 (2014)

Boumal, N.: An Introduction to Optimization on Smooth Manifolds. EPFL (2020)

Chen, S.: The KKT optimality conditions for optimization problem with interval-valued objective function on Hadamard manifolds. Optimization (2020). https://doi.org/10.1080/02331934.2020.1810248

Chen, S., Huang, N.: Vector variational inequalities and vector optimization problems on Hadamard manifolds. Optim. Lett. 10, 753–767 (2016)

Chuong, T.D., Kim, D.S.: Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160, 748–762 (2014)

Do Carmo, M.P.: Riemannian Geometry. Birkh$${\ddot{\rm a}}$$user, Boston (1992)

Farrokhiniya, M., Barani, A.: Limiting subdifferential calculus and perturbed distance function in Riemannian manifolds. J. Glob. Optim. 77, 661–685 (2020)

Ferreira, O.P., Iusem, A.N., Németh, S.Z.: Concepts and techniques of optimization on the sphere. TOP 22, 1148–1170 (2014)

Goberna, M.A., Kanzi, N.: Optimality conditions in convex multiobjective SIP. Math. Program. 164, 67–191 (2017)

Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2008)

Kabgani, A., Soleimani-damaneh, M.: Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization 67, 217–235 (2018)

Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8, 1517–1528 (2014)

Kanzi, N.: On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optim. Lett. 9, 1121–1129 (2015)

Karkhaneei, M.M., Mahdavi-Amiri, N.: Nonconvex weak sharp minima on Riemannian manifolds. J. Optim. Theory Appl. 183, 85–104 (2019)

Kostyukova, O.I., Tchemisova, T.V.: Optimality conditions for convex semi-infinite programming problems with finitely representable compact index sets. J. Optim. Theory Appl. 175, 76–103 (2017)

Kristály, A., Li, C., López, G., Nicolae, A.: What do ‘convexities’ imply on Hadamard manifolds? J. Optim. Theory Appl. 170, 1068–1074 (2016)

Lee, J.M.: Introduction to Riemannian Manifolds, 2nd edn. Springer, New York (2018)

Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)

Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)

Malmir, F., Barani, A.: Subdifferentials of distance function outside of target set in Riemannian manifolds. Bull. Iran. Math. Soc. https://doi.org/10.1007/s41980-020-00522-2

Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 263–279. Academic Press, New York (1981)

Quiroz, E.A.P., Cusihuallpa, N.B., Maculan, N.: Inexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifolds. J. Optim. Theory Appl. 186, 879–898 (2020)

Rahimi, M., Soleimani-damaneh, M.: Isolated efficiency in nonsmooth semi-infinite multi-objective programming. Optimization 67, 1923–1947 (2018)

Rapcsák, T.: Smooth Nonlinear Optimization in $${\mathbb{R}}^n$$. Kluwer Academic Publishers, Dordrecht (1997)

Rockafellar, R.T.: Convex Analysis. Princeton Math. Ser., vol. 28. Princeton University Press, Princeton (1970)

Rudin, W.: Functional Analysis. McGraw-Hill Inc, New York (1991)

Ruiz-Garzón, G., Osuna-Gómez, R., Rufián-Lizana, A., Hernández-Jiménez, B.: Optimality and duality on Riemannian manifolds. Taiwan. J. Math. 22, 1245–1259 (2018)

Ruiz-Garzón, G., Osuna-Gómez, R., Ruiz-Zapatero, J.: Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds. Symmetry 11, 1037 (2019)

Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42, 769–788 (2003)

Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for semi-infinite programming with multiple interval-valued objective functions. J. Nonlinear Funct. Anal. 2019, 1–21 (2019)

Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03742-1

Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints. Yugoslav J. Oper. Res. https://doi.org/10.2298/YJOR2001

Tung, L.T., Tam, D.H.: Necessary and sufficient optimality conditions for semi-infinite programming with multiple fuzzy-valued objective functions. Stat. Optim. Inf. Comput. (accepted for publication) (2021)

Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)

Wang, X.M., Li, C., Yao, J.C.: Projection algorithms for convex feasibility problems on Hadamard manifolds. J. Nonlinear Convex Anal. 17, 3–497 (2016)

Wolfe, P.: A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)

Yang, W.H., Zhang, L.H., Song, R.: Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10, 415–434 (2014)