Optimality Conditions and Duality for Multiobjective Semi-infinite Programming on Hadamard Manifolds
Tóm tắt
Từ khóa
Tài liệu tham khảo
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)
Barani, A.: Convexity of the solution set of a pseudoconvex inequality in Riemannian manifolds. Numer. Funct. Anal. Optim. 39, 588–599 (2018)
Barani, A., Hosseini, S.: Characterization of solution sets of convex optimization problems in Riemannian manifolds. Arch. Math. 114, 215–225 (2020)
Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)
Bergmann, R., Herzog, R.: Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds. SIAM J. Optim. 29, 2423–2444 (2019)
Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York (2010)
Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 42, 1455–1459 (2014)
Boumal, N.: An Introduction to Optimization on Smooth Manifolds. EPFL (2020)
Chen, S.: The KKT optimality conditions for optimization problem with interval-valued objective function on Hadamard manifolds. Optimization (2020). https://doi.org/10.1080/02331934.2020.1810248
Chen, S., Huang, N.: Vector variational inequalities and vector optimization problems on Hadamard manifolds. Optim. Lett. 10, 753–767 (2016)
Chuong, T.D., Kim, D.S.: Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160, 748–762 (2014)
Farrokhiniya, M., Barani, A.: Limiting subdifferential calculus and perturbed distance function in Riemannian manifolds. J. Glob. Optim. 77, 661–685 (2020)
Ferreira, O.P., Iusem, A.N., Németh, S.Z.: Concepts and techniques of optimization on the sphere. TOP 22, 1148–1170 (2014)
Goberna, M.A., Kanzi, N.: Optimality conditions in convex multiobjective SIP. Math. Program. 164, 67–191 (2017)
Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)
Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2008)
Kabgani, A., Soleimani-damaneh, M.: Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization 67, 217–235 (2018)
Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8, 1517–1528 (2014)
Kanzi, N.: On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optim. Lett. 9, 1121–1129 (2015)
Karkhaneei, M.M., Mahdavi-Amiri, N.: Nonconvex weak sharp minima on Riemannian manifolds. J. Optim. Theory Appl. 183, 85–104 (2019)
Kostyukova, O.I., Tchemisova, T.V.: Optimality conditions for convex semi-infinite programming problems with finitely representable compact index sets. J. Optim. Theory Appl. 175, 76–103 (2017)
Kristály, A., Li, C., López, G., Nicolae, A.: What do ‘convexities’ imply on Hadamard manifolds? J. Optim. Theory Appl. 170, 1068–1074 (2016)
Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)
Malmir, F., Barani, A.: Subdifferentials of distance function outside of target set in Riemannian manifolds. Bull. Iran. Math. Soc. https://doi.org/10.1007/s41980-020-00522-2
Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 263–279. Academic Press, New York (1981)
Quiroz, E.A.P., Cusihuallpa, N.B., Maculan, N.: Inexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifolds. J. Optim. Theory Appl. 186, 879–898 (2020)
Rahimi, M., Soleimani-damaneh, M.: Isolated efficiency in nonsmooth semi-infinite multi-objective programming. Optimization 67, 1923–1947 (2018)
Rapcsák, T.: Smooth Nonlinear Optimization in $${\mathbb{R}}^n$$. Kluwer Academic Publishers, Dordrecht (1997)
Rockafellar, R.T.: Convex Analysis. Princeton Math. Ser., vol. 28. Princeton University Press, Princeton (1970)
Rudin, W.: Functional Analysis. McGraw-Hill Inc, New York (1991)
Ruiz-Garzón, G., Osuna-Gómez, R., Rufián-Lizana, A., Hernández-Jiménez, B.: Optimality and duality on Riemannian manifolds. Taiwan. J. Math. 22, 1245–1259 (2018)
Ruiz-Garzón, G., Osuna-Gómez, R., Ruiz-Zapatero, J.: Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds. Symmetry 11, 1037 (2019)
Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42, 769–788 (2003)
Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for semi-infinite programming with multiple interval-valued objective functions. J. Nonlinear Funct. Anal. 2019, 1–21 (2019)
Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03742-1
Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints. Yugoslav J. Oper. Res. https://doi.org/10.2298/YJOR2001
Tung, L.T., Tam, D.H.: Necessary and sufficient optimality conditions for semi-infinite programming with multiple fuzzy-valued objective functions. Stat. Optim. Inf. Comput. (accepted for publication) (2021)
Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)
Wang, X.M., Li, C., Yao, J.C.: Projection algorithms for convex feasibility problems on Hadamard manifolds. J. Nonlinear Convex Anal. 17, 3–497 (2016)
Yang, W.H., Zhang, L.H., Song, R.: Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10, 415–434 (2014)