Optimal trained artificial neural network for Telugu speaker diarization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sahidullah M, Saha G (2013) A novel windowing technique for efficient computation of MFCC for speaker recognition. IEEE Signal Process Lett 20(2):149–152
May T, van de Par S, Kohlrausch A (2012) Noise-robust speaker recognition combining missing data techniques and universal background modeling. IEEE Trans Audio Speech Lang Process 20(1):108–121
Abrol V, Malhotra J (2013) Data dashboard-integrating data mining with data deduplication. Int J Comput Appl 71(22):28–33
Richardson F, Reynolds D, Dehak N (2015) Deep neural network approaches to speaker and language recognition. IEEE Signal Process Lett 22(10):1671–1675
Stafylakis T, Kenny P, Alam MJ, Kockmann M (2016) Speaker and channel factors in text-dependent speaker recognition. IEEE/ACM Trans Audio Speech Lang Process 24(1):65–78
Cumani S, Laface P (2018) Speaker recognition using e–vectors. IEEE/ACM Trans Audio Speech Lang Process 26(4):736–748
Tang Z, Li L, Wang D, Vipperla R (2017) Collaborative joint training with multitask recurrent model for speech and speaker recognition. IEEE/ACM Trans Audio Speech Lang Process 25(3):493–504
Li L, Wang D, Zhang C, Zheng TF (2016) Improving short utterance speaker recognition by modeling speech unit classes. IEEE/ACM Trans Audio Speech Lang Process 24(6):1129–1139
McLaren M, van Leeuwen D (2012) Source-normalized LDA for robust speaker recognition using i-vectors from multiple speech sources. IEEE/ACM Trans Audio Speech Lang Process 20(3):755–766
Barbari M, Leso L, Rossi G, Simonini S (2013) Use of radio frequency identification active technology to monitor animals in open spaces. Aust J Multi-Discip Eng 10(1):18–25
Mandasari MI, Saeidi R, McLaren M, van Leeuwen DA (2013) Quality measure functions for calibration of speaker recognition systems in various duration conditions. IEEE/ACM Trans Audio Speech Lang Process 21(11):2425–2438
Zhang X, Zou X, Sun M, Zheng TF, Jia C, Wang Y (2019) Noise robust speaker recognition based on adaptive frame weighting in GMM for i-vector extraction. IEEE Access 7:27874–27882
Ferràs M, Madikeri S, Motlicek P, Dey S, Bourlard H (2016) A large-scale open-source acoustic simulator for speaker recognition. IEEE Signal Process Lett 23(4):527–531
Cumani S, Laface P (2014) Large-scale training of pairwise support vector machines for speaker recognition. IEEE/ACM Trans Audio Speech Lang Process 22(11):1590–1600
Sarao V, Veritti D, Furino C, Giancipoli E, Alessio G, Boscia F, Lanzetta P (2017) Dexamethasone implant with fixed or individualized regimen in the treatment of diabetic macular oedema: six-month outcomes of the UDBASA study. Acta Ophthalmol 95(4):e255–e260
Stafylakis T, Alam MJ, Kenny P (2016) Text-dependent speaker recognition with random digit strings. IEEE/ACM Trans Audio Speech Lang Process 24(7):1194–1203
Diez M, Varona A, Penagarikano M, Rodriguez-Fuentes LJ, Bordel G (2014) On the complementarity of phone posterior probabilities for improved speaker recognition. IEEE Signal Process Lett 21(6):649–652
Ferrer L, Nandwana MK, McLaren M, Castan D, Lawson A (2019) Toward fail-safe speaker recognition: trial-based calibration with a reject option. IEEE/ACM Trans Audio Speech Lang Process 27(1):140–153
Remmiya R, Abisha C (2018) Artifacts removal in EEG signal using a NARX model based CS learning algorithm. Multim Res 1(1):1–8
Wagh MB, Gomathi N (2018) Route discovery for vehicular ad hoc networks using modified lion algorithm. Alex Eng J 57(4):3075–3087
Ghahabi O, Hernando J (2017) Deep learning backend for single and multisession i-vector speaker recognition. IEEE/ACM Trans Audio Speech Lang Process 25(4):807–817
Yan F, Men A, Yang B, Jiang Z (2016) An improved ranking-based feature enhancement approach for robust speaker recognition. IEEE Access 4:5258–5267
Cumani S, Laface P (2012) Analysis of large-scale SVM training algorithms for language and speaker recognition. IEEE Trans Audio Speech Lang Process 20(5):1585–1596
Liu Z, Wu Z, Li T, Li J, Shen C (2018) GMM and CNN hybrid method for short utterance speaker recognition. IEEE Trans Ind Inform 14(7):3244–3252
Jokinen E, Saeidi R, Kinnunen T, Alku P (2019) Vocal effort compensation for MFCC feature extraction in a shouted versus normal speaker recognition task. Comput Speech Lang 53:1–11
Alsulaiman M, Mahmood A, Muhammad G (2017) Speaker recognition based on Arabic phonemes. Speech Commun 86:42–51
Ghahabi O, Hernando J (2018) Restricted Boltzmann machines for vector representation of speech in speaker recognition. Comput Speech Lang 47:16–29
Franco-Pedroso J, Gonzalez-Rodriguez J (2016) Linguistically-constrained formant-based i-vectors for automatic speaker recognition. Speech Commun 76:61–81
You CH, Li H, Lee KA (2015) Relevance factor of maximum a posteriori adaptation for GMM–NAP–SVM in speaker and language recognition. Comput Speech Lang 30(1):116–134
Khosravani A, Homayounpour MM (2017) A PLDA approach for language and text independent speaker recognition. Comput Speech Lang 45:457–474
Mohan Y, Chee SS, Xin DKP, Foong LP (2016) Artificial neural network for classification of depressive and normal in EEG. In: 2016 IEEE EMBS conference on biomedical engineering and sciences (IECBES), Kuala Lumpur, pp 286–290
Boothalingam R (2018) Optimization using lion algorithm: a biological inspiration from lion’s social behavior. Evol Intell 11(1–2):31–52
Xu Y, Fan P, Yuan L (2013) A simple and efficient artificial bee colony algorithm. Math Prob Eng 2013:1–9
https://www.etv.co.in/showsentitys/home/6
Finsterle S, Kowalsky MB (2011) A truncated Levenberg–Marquardt algorithm for the calibration of highly parameterized nonlinear models. Comput Geosci 37(6):731–738
Fister I, Fister I, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46
Pandit P, Rao P (2015) Speaker diarization of broadcast news audios