Optimal sampling strategies for capture of genetic diversity differ between core and peripheral populations of Picea sitchensis (Bong.) Carr
Tóm tắt
Từ khóa
Tài liệu tham khảo
Batista F, Banares A, Caujape-Castells J, Marrero-Gomez M, Carque E, Sosa PA (2001) Allozyme diversity in three endemic species of Cistus (Cistaceae) from the Canary islands: Intraspecific and interspecific comparisons and implications for genetic conservation. Am J Bot 88:1582–1592
Brown ADH, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Ramantha Rao VR (eds) Collecting plant genetic diversity: technical guidelines. CAB International, Wallington, UK, pp. 75–111
Buchert GP, Rajora OP, Hood JV, Dancik BP (1997) Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conserv Biol 11:747–758
Bush RM, Smouse P (1992) Evidence of adaptive significance of allozymes in forest trees. New For 6:179–96
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 23:13–15
FAO (2004) Establishment and management of ex situ conservation stands. For Genet Res Inf 20:7–10
Frankel OH, Soulė ME (1981) Conservation and evolution. Cambridge University Press, Cambridge, p. 327
Gapare WJ (2003) Genetic diversity and spatial population structure of Sitka spruce (Picea sitchensis (Bong.)Carr.): implications for gene conservation of widespread species. Ph.D. thesis, University of British Columbia, p. 148
Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce (Picea sitchensis (Bong.)Carr.). Mol Ecol 14:2659–2667
Gapare WJ, Aitken SN, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.)Carr.) populations: implications for gene conservation of widespread species. Biol Conserv 123:113–123
Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. (2005) ASReml User Guide Release 2.0, VSN International Ltd., Hemel Hempstead HP1 1ES, UK
Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger K (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp.75–86
Hartl DL, Clark GC (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc. Publishers, Sunderland, MA, pp. 542
Johnson R, St. Clair B, Lipow S (2001) Genetic conservation in applied tree breeding programs. In: Proceedings international conference on ex situ and in situ conservation of commercial tropical trees. Yogyakarta, Indonesia
Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–38
Lawrence MJ, Marshall DF, Davies P (1995) Genetics of genetic conservation I. Sample size when collecting germplasm. Euphytica 84:89–99
Ledig FT, Bermejo-Velazquez PD, Hodgskiss DR, Johnson C, Flores-Lopez, Jacob-Cervantes V (2000) The mating system and genetic diversity in Martinez spruce, an extremely rare endemic of Mexico’s Sierra Madre Oriental: an example of facultative selfing and survival in interglacial refugia. Can J For Res 30:1156–1164
Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet: Citied http://lewis.eeb.uconn.edu/lewishome/software.html
Lowe A, Harris S, Ashton P (2005) Ecological genetics: design, analysis, and application. Blackwell Publishing, VIC, Australia, pp. 326
Marshall DR, Brown ADH (1975) Optimum sampling strategies for gene conservation. In: H. Frankel O, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, London, pp 53–80
Muller-Starck G (1995) Genetic variation in high elevation populations of Norway spruce (Picea abies [L.] Karst.) in Switzerland. Silvae Genet 44:356–362
Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590
Nei M, Maruyama T, Charkraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10
Parker KC, Hamrick JL, ParkerAJ, Nason JD (2001) Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87:99–113
Perry DJ, Bousquet J (1998a) Sequence-tagged-site (STS) markers of arbitrary genes: Development, characterization and analysis of linkage in black spruce. Genetics 149:1089–1098
Perry DJ, Bousquet J (1998b) Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers. Theor Appl Genet 97:735–743
Petit RJ, El-Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855
Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool, 2nd edn. Springer, New York, pp 657
Ritland K, Jain S (1981) Model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47:35–52
SAS Institute Inc. (1999) SAS/STAT User’s Guide, version 8, SAS online documentation. SAS Institute Inc., Cary, NC, USA
Schoen DJ, Brown ADH (1991) Intraspecific variation in gene diversity and effective population size correlated with the mating system in plants. Proc Nat Acad Sci USA 88:4494–4497
Sproule AT, Dancik BP (1996) The mating system of black spruce in north-Alberta, Canada. Silvae Genet 45:159–164
Stoehr MU, El-Kassaby YA (1997) Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. Theor Appl Genet 94:83–90
Theilade I (2003) The role of ex situ conservation of trees in living stands. Guidelines and technical notes No. 64. Danida Forest Seed Centre, Hunlebaek, Denmark
Yanchuk AD (2001) A quantitative framework for breeding and conservation of forest tree genetic resources in British Columbia. Can J For Res 31:566–576
Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935