Optimal quantum state transformations based on machine learning
Tóm tắt
It is well known that quantum algorithms may solve problems efficiently that are intractable using conventional algorithms. Quantum algorithms can be designed with a set of universal quantum gates that transform input states into desired output states. However, designing quantum algorithms that transform states in desired ways is challenging due to its complexity. In this paper, we propose a machine learning framework for the transformation of unknown states into their corresponding target states. Specifically, a parameterized quantum circuit learns a given task by tuning its parameters. After the learning is done, the circuit is competent for the quantum task. This allows us to circumvent cumbersome circuit design based on universal quantum gates. If perfect transformation is forbidden by quantum theory, an optimal transformation can be obtained in terms of fidelity. This provides a research method to study various quantum no-go theorems that characterize the intrinsic gap between quantum and classical information. As examples, quantum state rotation and quantum state cloning are studied using numerical simulations. We also show the good robustness of our machine learning framework to corrupted training data, which is a very nice property for physical implementation on near-term noisy intermediate-scale quantum devices.
Tài liệu tham khảo
Nielsen, M.A., Chuang I.L.: Quantum Computation and Quantum Information, p. 9781107002173 . Cambridge University Press, I.L. (2011)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of Twenty-eighth ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)
Yoo, S., Bang, J., Lee, C., Lee, J.: A quantum speedup in machine learning: finding an N -bit Boolean function for a classification. New J. Phys. 16, 103014 (2014)
Gisin, N., Popescu, S.: Spin flips and quantum information for antiparallel spins. Phys. Rev. Lett. 83, 432 (1999)
Bužek, V., Hillery, M.: Optimal manipulations with qubits: Universal quantum entanglers. Phys. Rev. A 62, 022303 (2000)
Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)
Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)
Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)
Wang, M.-H., Cai, Q.-Y.: High-fidelity quantum cloning of two nonorthogonal quantum states via weak measurements. Phys. Rev. A 99, 012324 (2019)
Li, M.-S., Wang, Y.-L.: Masking quantum information in multipartite scenario. Phys. Rev. A 98, 062306 (2018)
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)
Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)
Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)
Oszmaniec, M., Grudka, A., Horodecki, M., Wójcik, A.: Creating a superposition of unknown quantum states. Phys. Rev. Lett. 116, 110403 (2016)
Modi, K., Pati, A.K., de Sen, A., Sen, U.: Masking quantum information is impossible. Phys. Rev. Lett. 120, 230501 (2018)
Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13, 431 (2017)
Canabarro, A., Brito, S., Chaves, R.: Machine learning nonlocal correlations. Phys. Rev. Lett. 122, 200401 (2019)
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019)
Gammelmark, S., Mølmer, K.: Quantum learning by measurement and feedback. New J. Phys. 11, 033017 (2009)
Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)
Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309 (2018)
Bukov, M., Day, A.G.R., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Reinforcement learning in different phases of quantum control. Phys. Rev. X 8, 031086 (2018)
Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019)
Cao, S.-X., Wossnig, L., Vlastakis, B., Leek, P., Grant, E.: Cost-function embedding and dataset encoding for machine learning with parametrized quantum circuits. Phys. Rev. A 101, 052309 (2020)
Cincio, L., Subaşi, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algorithm for state overlap. New J. Phys. 20, 113022 (2018)
Lin, J., Lai, Z.-Y., Li, X.-P.: Quantum adiabatic algorithm design using reinforcement learning. Phys. Rev. A 101, 052327 (2020)
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4, 043001 (2019)
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)
McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018)
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331 (2019)
Dallaire-Demers, P.-L., Romero, J., Veis, L., Sim, S., Aspuru-Guzik, A.: Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer. Quantum Sci. Technol. 4, 045005 (2019)
Nakanishi, K.M., Fujii, K., Todo, S.: Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Res. 2, 043158 (2020)
Li, J., Yang, X.-D., Peng, X.-H., Sun, C.-P.: Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett. 118, 150503 (2017)
Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179. (1984)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Modern Phys. 74, 145 (2002)
Fan, H., Wang, Y.N., Jing, L., Yue, J.D., Shi, H.D., Zhang, Y.L., Mu, L.Z.: Quantum cloning machines and the applications. Phys. Rep. 544, 241 (2014)
Huttner, N.G.: Quantum cloning, eavesdropping and bell’s inequality. Phys. Lett. A 228, 13 (1997)
Bartkiewicz, K., Lemr, K., Cernoch, A., Soubusta, J., Miranowicz, A.: Experimental eavesdropping based on optimal quantum cloning. Phys. Rev. Lett. 110, 173601 (2013)
Niu, C.S., Griffiths, R.B.: Optimal copying of one quantum bit. Phys. Rev. A 58, 4377 (1998)
Cerf, N.J.: Pauli cloning of a quantum bit. Phys. Rev. Lett. 84, 4497 (2000)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v5. (2014)