Optimal filtering in multipulse sequences for nuclear quadrupole resonance detection
Tóm tắt
The application of the multipulse sequences in nuclear quadrupole resonance (NQR) detection of explosive and narcotic substances has been studied. Various approaches to increase the signal to noise ratio (SNR) of signal detection are considered. We discussed two modifications of the phase-alternated multiple-pulse sequence (PAMS): the 180° pulse sequence with a preparatory pulse and the 90° pulse sequence. The advantages of optimal filtering to detect NQR in the case of the coherent steady-state precession have been analyzed. It has been shown that this technique is effective in filtering high-frequency and low-frequency noise and increasing the reliability of NQR detection. Our analysis also shows the PAMS with 180° pulses is more effective than PSL sequence from point of view of the application of optimal filtering procedure to the steady-state NQR signal.
Tài liệu tham khảo
Appl. Magn. Reson. 25(3–4) (2004).
Proceedings of the Workshop on Magnetic Resonance Detection of Explosives and Illicit Materials (MRDE-2011), Yalova, Turkey, 2011, Appl. Magn. Reson. (2012).
K. L. Sauer, B. H. Suits, A. N. Garroway, and J. B. Miller, Chem. Phys. Lett. 342, 362 (2001).
G. V. Mozjoukhine, Appl. Magn. Reson. 22, 31 (2002).
D. Ya. Osokin, R. R. Khusnutdinov, and V. A. Shagalov, Appl. Magn. Reson. 25, 513 (2004).
S. Aerts, D. Aerts, F. Schroeck, and J. Sachs, arXiv: cond-mat/0612010v1 Preprint (2006).
A. Jakobsson, M. Mossberg, M. Rowe, and J. A. Smith, IEEE Trans. Geosci. Remote Sens. 43, 2659 (2005).
A. Jakobsson, M. Mossberg, M. Rowe, and J. A. S. Smith, IEEE Trans. Signal Process. 54, 1610 (2006).
A. Gregorovic and T. Apih, J. Magn. Res. 198. 215 (2009).
Jinping Niua, Tao Sua, Xuehui Hea, Kairan Zhua, and Huiyang Wua, Procedia Eng. 7, 377 (2010).
D. Ya. Osokin, Phys. Status Solidi B 109, 7 (1982).
D. Ya. Osokin, Phys. Status Solidi B 102, 681 (1980).
D. Ya. Osokin, “Method of detection and registration of nuclear quadrupole resonance spectra,” RF Inventor’s Certificate No. 958935 (1982).
D. Ya. Osokin, J. Mol. Struct. 83, 243 (1982).
D. Ya. Osokin, Sov. Phys. JETP 57, 69 (1983).
V. L. Ermakov and D. Ya. Osokin, Mol. Phys. 53, 1335 (1984).
U. Haeberlen and M. Mehring, High-Resolution NMR Spectroscopy of Solids (Springer, Berlin, 1976).
D. Ya. Osokin, Mol. Phys. 48, 283 (1983).
D. Ya. Osokin, V. L. Ermakov, R. Kh. Kurbanov, and V. A. Shagalov, Z. Naturforsch. 47, 439 (1992).
Yu. I. Ivanov, B. N. Provotorov, and E. V. Fel’dman, Sov. Phys. JETP 48, 930 (1978).
S. S. Kim, J. R. P. Jayakody, and R. A. Marino, Z. Naturforsch. A 47, 415 (1991).
Yu S. Lezin, Optimal Filters and Integrators of Optical Signals (Sovetskoe Radio Moscow, 1963), p. 319.
I. S. Gonorovski, Radiotechnical Circuits and Signals (Sovetskoe Radio, Moscow, 1977), pp. 440–472.
D. Ya. Osokin and R. R. Khusnutdinov, Prib. Tekh. Eksp. 1, 96 (2009).