Optimal feature selection with CNN-feature learning for DDoS attack detection using meta-heuristic-based LSTM
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbasi, M.U., Rashad, A., Basalamah, A., Tariq, M.: Detection of epilepsy seizures in neo-natal EEG using LSTM architecture. IEEE Access 7, 179074–179085 (2019)
Ahmad, I., Namal, S., Ylianttila, M., Gurtov, A.: Security in software defined networks: a survey. IEEE Commun. Surv. Tutor. 17(4), 2317–2346 (2015)
Arun Raj Kumar, P., Selvakumar, S.: Distributed denial of service attack detection using an ensemble of neural classifier. Comput. Commun. 34(11), 1328–1341 (2011)
Bhuyan, M.H., Kashyap, H.J., Bhattacharyya, D.K., Kalita, J.K.: Detecting distributed denial of service attacks: methods, tools and future directions. Comput. J. 57(4), 537–556 (2014)
Bojović, P.D., Bašičević, I., Ocovaj, S., Popović, M.: A practical approach to detection of distributed denial-of-service attacks using a hybrid detection method. Comput. Electr. Eng. 73, 84–96 (2019)
Çakmakçı, S.D., Kemmerich, T., Ahmed, T., Baykal, N.: Online DDoS attack detection using Mahalanobis distance and Kernel-based learning algorithm. J. Netw. Comput. Appl. 168, 102756 (2020)
Chaithanya, P.S., Gauthama Raman, M.R., Nivethitha, S., Seshan, K.S., Shankar Sriram, V.: An efficient intrusion detection approach using enhanced random forest and moth-flame optimization technique. In: Computational Intelligence in Pattern Recognition, vol. 999, pp. 877–884 (2020)
Chen, Y., Hwang, K., Ku, W.: Collaborative detection of DDoS attacks over multiple network domains. IEEE Trans. Parallel Distrib. Syst. 18(12), 1649–1662 (2007a)
Chen, Z., Chen, Z., Delis, A.: An inline detection and prevention framework for distributed denial of service attacks. Comput. J. 50(1), 7–40 (2007b)
Chen, C.-Y., Chen, L.-A., Cai, Y.-Z., Tsai, M.-H.: RNN-based DDoS detection in IoT scenario. In: 2020 International computer symposium (ICS), pp. 448–453 (2020)
Chonka, A., Singh, J., Zhou, W.: Chaos theory based detection against network mimicking DDoS attacks. IEEE Commun. Lett. 13(9), 717–719 (2009)
Gao, Y., Wu, H., Song, B., Jin, Y., Luo, X., Zeng, X.: A distributed network intrusion detection system for distributed denial of service attacks in vehicular ad hoc network. IEEE Access 7, 154560–154571 (2019)
Haider, S., et al.: A deep CNN ensemble framework for efficient DDoS attack detection in software defined networks. IEEE Access 8, 53972–53983 (2020)
Hamed, H., Al-Shaer, E.: Taxonomy of conflicts in network security policies. Commun. Mag. IEEE 44(3), 134–141 (2006)
Jiang, Y., Chen, W., Liu, M., Wang, Y., Meijering, E.: 3D neuron microscopy image segmentation via the ray-shooting model and a DC-BLSTM network. IEEE Trans. Med. Imaging 40(1), 26–37 (2021)
Jing, Z.H.U., Zhongdong, W.U., Longbin, D.I.N.G., Yang, W.A.N.G.: DDoS attack detection based on DBN in SDN environment. Comput. Eng. 46(4), 157–161 (2020)
Kasim, Ö.: An efficient and robust deep learning based network anomaly detection against distributed denial of service attacks. Comput. Netw. 180, 107390 (2020)
Kushwah, G.S., Ranga, V.: Voting extreme learning machine based distributed denial of service attack detection in cloud computing. J. Inf. Secur. Appl. 53, 102532 (2020)
Li, J., Liu, Y., Gu, L.: DDoS attack detection based on neural network. In: 2010 2nd international symposium on aware computing, pp. 196–199 (2010)
Liu, Z., He, Y., Wang, W., Zhang, B.: DDoS attack detection scheme based on entropy and PSO-BP neural network in SDN. China Commun. 16(7), 144–155 (2019)
Makuvaza, A., Jat, D.S., Gamundani, A.M.: Deep neural network (DNN) solution for real-time detection of distributed denial of service (DDoS) attacks in software defined networks (SDNs). SN Comput. Sci. 2, 1–10 (2021)
Malipatil, S., Maheshwari, V., Chandra, M.B.: Area optimization of CMOS full adder design using 3T XOR. In: 2020 International conference on wireless communications signal processing and networking (WiSPNET), pp. 192–194 (2020)
Namatēvs, I.: Deep convolutional neural networks: structure, feature extraction and training. Inf. Technol. Manag. Sci. 20, 40–47 (2017)
Penmatsa, R.K.V., Subba Raju, K.V., Ruthala, S.: Application of whale optimization algorithm in DDOS attack detection and feature reduction. In: Inventive Computation and Information Technologies, vol. 173, pp. 93–102 (2021)
Ravi, N., Shalinie, S.M.: Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet Things J. 7(4), 3559–3570 (2020)
Shin, S., Wang, H., Gu, G.: A first step toward network security virtualization: from concept to prototype. IEEE Trans. Inf. Forensics Secur. 10(10), 2236–2249 (2015)
Singh, K., Dhindsa, K.S., Nehra, D.: T-CAD: a threshold based collaborative DDoS attack detection in multiple autonomous systems. J. Inf. Secur. Appl. 51, 102457 (2020)
Tabatabaie Nezhad, S.M., Nazari, M., Gharavol, E.A.: A novel DoS and DDoS attacks detection algorithm using ARIMA time series model and chaotic system in computer networks. IEEE Commun. Lett. 20(4), 700–703 (2016a)
Tabatabaie Nezhad, S.M., Nazari, M., Gharavol, E.A.: A novel DoS and DDoS attacks detection algorithm using ARIMA time series model and chaotic system in computer networks. IEEE Commun. Lett. 20(4), 700–703 (2016b)
Tan, Z., Jamdagni, A., He, X., Nanda, P., Liu, R.P., Hu, J.: Detection of denial-of-service attacks based on computer vision techniques. IEEE Trans. Comput. 64(9), 2519–2533 (2015)
Tang, Y., Li, B., Liu, M., Chen, B., Wang, Y., Ouyang, W.: AutoPedestrian: an automatic data augmentation and loss function search scheme for pedestrian detection. IEEE Trans. Image Process. 30, 8483–8496 (2021)
Tuan, T.A., Long, H.V., Son, L.H., Kumar, R., Priyadarshini, I., Kim Son, N.T.: Performance evaluation of Botnet DDoS attack detection using machine learning. Evol. Intell. 13, 283–294 (2020)
Velliangiri, S., Pandey, H.M.: Fuzzy-Taylor-elephant herd optimization inspired deep belief network for DDoS attack detection and comparison with state-of-the-arts algorithms. Futur. Gener. Comput. Syst. 110, 80–90 (2020)
Wang, M., Lu, Y., Qin, J.: A dynamic MLP-based DDoS attack detection method using feature selection and feedback. Comput. Secur. 88, 101645 (2020)
Yu, J., Lee, E., Oh, S., Seo, Y., Kim, Y.: A survey on security requirements for WSNs: focusing on the characteristics related to security. IEEE Access 8, 45304–45324 (2020)
Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013)
Zeng, K., Wang, Y., Mao, J., Liu, J., Peng, W., Chen, N.: A local metric for defocus blur detection based on CNN feature learning. IEEE Trans. Image Process. 28(5), 2107–2115 (2019)
Zhang, C., Luo, F., Ranzi, G.: An advanced persistent distributed denial-of-service attack model with reverse-path forwarding-based defending strategy. IEEE Access 7, 185590–185596 (2019)