Phân tích lỗi tối ưu của công thức Alikhanov cho phương trình Schrödinger phân số theo thời gian

Journal of Applied Mathematics and Computing - Tập 69 - Trang 159-170 - 2022
Guoye Zhao1, Na An1, Chaobao Huang2
1School of Mathematics and Statistics, Shandong Normal University, Jinan, China
2School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan, China

Tóm tắt

Trong bài báo này, chúng tôi đã phát triển một phương pháp phần tử hữu hạn Alikhanov hoàn toàn rời rạc để giải phương trình Schrödinger phân số theo thời gian với nghiệm không trơn. Sơ đồ được đề xuất sử dụng công thức Alikhanov trên lưới phân cấp để xấp xỉ đạo hàm phân số Caputo theo hướng thời gian và phương pháp phần tử hữu hạn tiêu chuẩn theo hướng không gian. Hơn nữa, độ ổn định theo chuẩn $$L^2(\Omega )$$ và kết quả hội tụ tối ưu cho nghiệm được tính được chứng minh. Cuối cùng, một ví dụ số được trình bày để xác minh độ chính xác của sơ đồ được đề xuất.

Từ khóa


Tài liệu tham khảo

Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015) An, N., Huang, C., Xijun, Yu.: Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete Continu. Dyn. Syst. Ser. B 25(1), 321–334 (2020) Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79(1), 624–647 (2019) Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact adi schemes for nonlinear time-fractional schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018) Cheng, M.: Bound state for the fractional schrödinger equation with unbounded potential. J. Math. Phys. 53(4), 043507 (2012) Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear schrödinger equation with the fractional laplacian. Proc. R. Soc. Edinb. Sect. A Math. 142(6), 1237–1262 (2012) Huang, C., An, N., Chen, H.: Local \(H^1\)-norm error analysis of a mixed finite element method for a time-fractional biharmonic equation. Appl. Numer. Math. 173, 211–221 (2022) Huang, C., An, N., Xijun, Yu.: A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient. Appl. Numer. Math. 151, 367–379 (2020) Huang, C., Chen, H., An, N.: \(\beta \)-robust superconvergent analysis of a finite element method for the distributed order time-fractional diffusion equation. J. Sci. Comput. 90(1), 44 (2022) Huang, C., Stynes, M.: A sharp \(\alpha \)-robust \({L}^\infty ({H}^1)\) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov \({L}2-1_{\sigma }\) scheme and a standard FEM. J. Sci. Comput. 91(2), 43 (2022) Iomin, A.: Fractional-time Schrödinger equation: fractional dynamics on a comb. Chaos, Solitons Fractals 44(4–5), 348–352 (2011) Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019) Kopteva, N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comput. 90(327), 19–40 (2021) Laskin, N.: Fractional quantum mechanics and lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000) Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theory Methods Appl. 14(2), 355–376 (2021) Li, M., Wei, Y., Niu, B., Zhao, Y.-L.: Fast L2–1\(_{\sigma }\) Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives. Appl. Math. Comput. 416, 126734 (2022) Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018) Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019) Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017) Thomée, V.: Galerkin finite element methods for parabolic problems. 2nd revised and expanded ed. Berlin: Springer, 2nd revised and expanded ed. edition (2006) Wang, S., Mingyu, X.: Generalized fractional schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007) Wang, Y., Wang, G., Linlin, B., Mei, L.: Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algorithms 88(1), 419–451 (2021) Zaky, M.A., Hendy, A.S.: Convergence analysis of an L1-continuous galerkin method for nonlinear time-space fractional schrödinger equations. Int. J. Comput. Math. 98(7), 1420–1437 (2021) Jun Zhang, H., Chen, T.S., Wang, J.: Error analysis of a fully discrete scheme for time fractional Schrödinger equation with initial singularity. Int. J. Comput. Math. 97(8), 1636–1647 (2020) Zhang, J., Wang, J.R., Zhou, Y.: Numerical analysis for time-fractional schrödinger equation on two space dimensions. Adv. Differ. Equ. 2020(1), 1–16 (2020) Zheng, M., Liu, F., Jin, Z.: The global analysis on the spectral collocation method for time fractional schrödinger equation. Appl. Math. Comput. 365, 124689 (2020) Zhou, B., Chen, X., Li, D.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85(2), 39 (2020)