Mã kết cấu hướng tối ưu sử dụng các mặt phẳng đếm bit chuyển giao đa quy mô cho việc nhận diện dấu vân tay

Multimedia Tools and Applications - Tập 81 - Trang 20291-20310 - 2022
Pawan Dubey1, Tirupathiraju Kanumuri2, Ritesh Vyas3
1Madhav Institute of Technology & Science, Gwalior, India
2National Institute of Technology Delhi Narela, Delhi, India
3Lancaster University, Lancaster, UK

Tóm tắt

Các bộ lọc Gabor đơn biến đã được sử dụng rộng rãi để biểu diễn cấu trúc dấu vân tay. Các bộ lọc này thể hiện sự biểu diễn không hiệu quả do mất mát trong việc phát hiện thông tin và việc xác định vị trí sai của các đường vân tay có độ rộng khác nhau. Do đó, công việc đề xuất sử dụng một phương pháp biểu diễn dựa trên lọc đa quy mô, được gọi là “mã kết cấu hướng tối ưu (ODTC)”. Phương pháp biểu diễn đề xuất tận dụng các cấu trúc đường nét mà bộ lọc Gabor đơn biến không nhận thấy, và cơ chế đếm bit chuyển giao đa quy mô (MBCC) tích hợp các đặc điểm cấu trúc của nhiều độ rộng. Đầu tiên, các mặt phẳng MBCC được thu được bằng cách đếm biến chuyển từng bit trên các chuỗi được tạo thành từ việc kết hợp các phản hồi nhị phân của các hệ số bộ lọc Gabor tại các vị trí nhị phân tương ứng trong các hướng đã xem xét. Tiếp theo, mặt phẳng kết cấu hướng tối ưu, tức là biểu diễn định hướng (DR), được tạo ra bằng cách tính toán các chỉ số định hướng chiếm ưu thế liên quan đến giá trị tối đa của MBCC tại mỗi vị trí tương ứng của các mặt phẳng MBCC trong các hướng khác nhau. Cuối cùng, quá trình mã hóa DR thu được sẽ tạo ra biểu diễn ODTC cuối cùng. Các kết quả thực nghiệm trên các cơ sở dữ liệu dấu vân tay chuẩn như PolyU 2D, đa phổ và IITD cho thấy công việc đề xuất vượt trội hơn so với nhiều phương pháp dựa trên mã hóa hiện tại.

Từ khóa

#mã kết cấu hướng tối ưu #bộ lọc Gabor #nhận diện dấu vân tay #đếm bit chuyển giao đa quy mô #tính toán chỉ số định hướng

Tài liệu tham khảo

Basu M (2002) Gaussian-based edge-detection methods-a survey. IEEE Trans Syst, Man, and Cybern, Part C (Appl Rev) 32(3):252–260 Chen L, Lu G, Zhang D (2004) Effects of different gabor filters parameters on image retrieval by texture. In: Multimedia modelling conference, 2004. proceedings. 10th international. IEEE, pp 273–278 Connie T, Jin A T B, Ong M G K, Ling D N C (2005) An automated palmprint recognition system. Image Vision Comput 23(5):501–515 Dubey P, Kanumuri T (2015) Optimal local direction binary pattern based palmprint recognition. In: 2nd international conference on computing for sustainable global development (INDIACom). IEEE, pp 1979–1984 Dubey P, Kanumuri T, Vyas R (2018) Sequency codes for palmprint recognition. SIViP 12(4):677–684 Fei L, Lu G, Jia W, Wen J, Zhang D (2018) Complete binary representation for 3-D palmprint recognition. IEEE Trans Instrum Meas 67(12):2761–2771 Fei L, Xu Y, Tang W, Zhang D (2016) Double-orientation code and nonlinear matching scheme for palmprint recognition. Pattern Recogn 49:89–101 Fei L, Xu Y, Zhang D (2016) Half-orientation extraction of palmprint features. Pattern Recogn Lett 69:35–41 Fei L, Zhang B, Xu Y, Yan L (2016) Palmprint recognition using neighboring direction indicator. IEEE Trans Hum Mach Syst 46(6):787–798 Genovese A, Piuri V, Plataniotis K N, Scotti F (2019) PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition. IEEE Trans Inf Forensic Secur 14(12):3160–3174 Guo Z, Zhang D, Zhang L, Zuo W (2009) Palmprint verification using binary orientation co-occurrence vector. Pattern Recogn Lett 30(13):1219–1227 Han C C, Cheng H L, Lin C L, Fan K C (2003) Personal authentication using palm-print features. Pattern Recogn 36(2):371–381 Han W Y, Lee J C (2012) Palm vein recognition using adaptive Gabor filter. Expert Syst Appl 39(18):13225–13234 Hanmandlu M, Gureja A, Jain A (2010) Palm print recognition using local binary pattern operator and support vector machines. In: 2010 international conference on signal and image processing. IEEE, pp 158–162 Hinton G E, Krizhevsky A, Wang S D (2011) Transforming auto-encoders. In: International conference on artificial neural networks. Springer, pp 44–51 Hong Kong PolyU 2D/3D Database (2015). http://www.comp.polyu.edu.hk/~biometrics/2D3DPalmprint/2D3DPalmprint.htm Huang D S, Jia W, Zhang D (2008) Palmprint verification based on principal lines. Pattern Recogn 41(4):1316–1328 Huh J-H, Seo K (2019) Blockchain-based mobile fingerprint verification and automatic log-in platform for future computing. The J Supercomput 75 (6):3123–3139 IITD Touchless Palmprint Database(version1.0) (2016). http://www.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm Jalali A, Mallipeddi R, Lee M (2015) Deformation invariant and contactless palmprint recognition using convolutional neural network. In: HAI 2015 - Proceedings of the 3rd international conference on human-agent interaction, pp 209–212 Jia W, Hu R-X, Lei Y-K, Zhao Y, Gui J (2013) Histogram of oriented lines for palmprint recognition. IEEE Trans Syst Man Cybern: Syst 44 (3):385–395 Jia W, Huang D-S, Tao D, Zhang D (2008) Palmprint identification based on directional representation. In: IEEE International conference on systems, man and cybernetics, 2008. IEEE, pp 1562–1567 Jia W, Zhang B, Lu J, Zhu Y, Zhao Y, Zuo W, Ling H (2017) Palmprint recognition based on complete direction representation. IEEE Trans Image Process 26(9):4483–4498 Jing X Y, Zhang D (2004) A face and palmprint recognition approach based on discriminant DCT feature extraction. IEEE Trans Syst, Man, and Cybern, Part B: Cybern 34(6):2405–2415 Khan A, Sohail A, Zahoora U, Qureshi A S (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53 (8):5455–5516 Kong A, Zhang D, Kamel M (2009) A survey of palmprint recognition. Pattern Recogn 42(7):1408–1418 Kong A W-K, Zhang D (2004) Feature-Level Fusion for Effective Palmprint Authentication. Biometric Authentication, Proceedings, pp 761–767 Kong AWK, Zhang D (2004) Competitive coding scheme for palmprint verification. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. 1:4–7 Kong W K, Zhang D (2002) Palmprint texture analysis based on low-resolution images for personal authentication Proceedings 16th International Conference on Pattern Recognition, vol 3. IEEE, pp 807–810 Kong W K, Zhang D, Li W (2003) Palmprint feature extraction using 2-D Gabor filters. Pattern Recogn 36(10):2339–2347 Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097–1105 Kumar A, Shen H C (2004) Palmprint identification using PalmCodes. Proceedings - Third International Conference on Image and Graphics 2 (2):258–261 Lee T S (1996) Image representation using 2-d gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971 Li F, Leung M K H, Yu X (2004) Palmprint identification using Hausdorff distance. In: Proceedings of international workshop on biomedical circuits and systems, pp S3 3–S5–8 Li G, Kim J (2017) Palmprint recognition with local micro-structure tetra pattern. Pattern Recogn 61:29–46 Lu G, Zhang D, Wang K (2003) Palmprint recognition using eigenpalms features. Pattern Recogn Lett 24(9-10):1463–1467 Minaee S, Abdolrashidi A, Su H, Bennamoun M, Zhang D (2019) Biometric recognition using deep learning: A survey. arXiv preprint arXiv:1912.00271 Pan X, Ruan Q-Q (2008) Palmprint recognition with improved two-dimensional locality preserving projections. Image Vis Comput 26(9):1261–1268 Rotinwa-Akinbile M O, Aibinu AM, Salami M J E (2011) Palmprint recognition using principal lines characterization. In: First international conference on informatics and computational intelligence, pp 278–282 Shu W, Zhang D (1998) Palmprint verification: an implementation of biometric technology. In: Proceedings Fourteenth international conference on pattern recognition, vol 1. IEEE, pp 219–221 Su R, Chen W, Wei L, Li X, Jin Q, Tao W (2018) Encoded texture features to characterize bone radiograph images. Proceedings - International Conference on Pattern Recognition 2018-August:3856–3861 Sun Z, Tan T, Wang Y, Li S Z (2005) Ordinal palmprint represention for personal identification [represention read representation]. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1. IEEE, pp 279–284 Sundararajan K, Woodard D L (2018) Deep learning for biometrics: A survey. ACM Comput Surv 51(3) Tabejamaat M, Mousavi A (2017) Concavity-orientation coding for palmprint recognition. Mutimed Tools Appl 76(7):9387–9403 Tamrakar D, Khanna P (2015) Palmprint verification with xor-sum code. SIViP 9(3):535–542 Wang J-G, Yau W-Y, Suwandy A, Sung E (2008) Person recognition by fusing palmprint and palm vein images based on laplacianpalm representation. Pattern Recogn 41(5):1514–1527 Wang S, Xu Y (2008) A new palmprint identification algorithm based on gabor filter and moment invariant. In: 2008 IEEE conference on cybernetics and intelligent systems. IEEE, pp 491–496 Wu X, Zhang D, Wang K (2003) Fisherpalms based palmprint recognition. Pattern Recogn Lett 24(15):2829–2838 Wu X, Zhang D, Wang K, Huang B (2004) Palmprint classification using principal lines. Pattern Recogn 37(10):1987–1998 Xu Y, Fei L, Wen J, Zhang D (2016) Discriminative and robust competitive code for palmprint recognition. IEEE Trans Syst, Man, and Cybern: Syst PP(99):1–10 Younesi A, Amirani M C (2017) Gabor filter and texture based features for palmprint recognition. Procedia Computer Science 108:2488–2495 Young S R, Rose D C, Karnowski T P, Lim S-H, Patton R M (2015) Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Mlhpc’15 proceedings of the workshop on machine learning in high-performance computing environments, article no. 4, Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Oak Ridge Zhang D, Kong W K, You J, Wong M (2003) Online palmprint identification. IEEE Trans Pattern Anal Mach Intell 25(9):1041–1050 Zhang D, Zuo W, Yue F (2012) A comparative study of palmprint recognition algorithms. ACM Comput Surv (CSUR) 44(1):1–37 Zhang L, Zhang D (2004) Characterization of palmprints by wavelet signatures via directional context modeling. IEEE Trans Syst, Man, and Cybern, Part B: Cybern 34(3):1335–1347 Zhang L, Li H (2012) Encoding local image patterns using riesz transforms: With applications to palmprint and finger-knuckle-print recognition. Image Vis Comput 30(12):1043–1051 Zhang L, Li H, Niu J (2012) Fragile bits in palmprint recognition. IEEE Sig Process Lett 19(10):663–666 Zhao D, Pan X, Luo X, Gao X (2015) Palmprint recognition based on deep learning. IET Conf Publ 2015(CP681):214–216 Zhang D, Guo Z, Lu G, Zhang L, Zuo W (2010) An Online System of Multispectral Palmprint Verification. IEEE Trans Instrument Measurement 59(2):480–490 Zhong D, Du X, Zhong K (2019) Decade progress of palmprint recognition: a brief survey. Neurocomputing 328:16–28