Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer

Springer Science and Business Media LLC - Tập 188 - Trang 1-22 - 2015
H. E. Júnez-Ferreira1, G. S. Herrera2, L. González-Hita3, A. Cardona4, J. Mora-Rodríguez5
1Maestría en Ingeniería Aplicada, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
2Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
3Subcoordinación de Hidrología Subterránea, Instituto Mexicano de Tecnología del Agua, Jiutepec, Mexico
4Área Ciencias de la Tierra, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
5Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Guanajuato, Mexico

Tóm tắt

A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

Tài liệu tham khảo

ASCE (American Society of Civil Engineers). (2003). Long-term groundwater monitoring: the state of the art. USA: Task Committee on the State of the Art in Long-term Groundwater Monitoring Design. Banning, A., Cardona, A., & Rüde, T. (2012). Uranium and arsenic dynamics in volcano-sedimentary basins—an exemplary study in north-central Mexico. Applied Geochemistry, 27, 2160–2172. Cardona, A., Carrillo-Rivera J. J., Castro-Larragoitia, G. J., & Graniel-Castro, E. (2008). Combined use of indicators to evaluate waste water contamination to local flow systems in semi-arid regions: San Luis Potosi, Mexico. Selected Papers Series of the International Association of Hydrogeologists (SPS-IAH) on the theme: “Groundwater flow understanding from local to regional scales”. Balkema, Taylor & Francis, 85–104. Carrillo-Rivera, J. J., Cardona, A., & Edmunds, W. M. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí basin, México. Journal of Hydrology, 261, 24–47. Chadalavada, S., Datta, B., & Naidu, R. (2011). Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site. Environmental Monitoring and Assessment, 173, 929–940. CEASG (Geofísica de Exploraciones GUYSA, S.A. de C.V.). (1998). Estudio hidrogeológico y modelo matemático del acuífero del Valle de Irapuato—Valle de Santiago. Documento del plan estatal hidráulico de Guanajuato, México. Dutta, D., Das Gupta, A., & Ramnarong, V. (1998). Design and optimization of a ground water monitoring system using GIS and multicriteria decision analysis. Ground Water Monitoring and Remediation, 18(1), 139–147. González, L., Herrera, G., Cardona, A., Mora, J., Júnez, H. E., Becerra, L., & Gutiérrez, C. (2003). Contaminación difusa en el agua subterránea en el acuífero Irapuato-Valle, Gto. México: Comisión Nacional del Agua, IMTA (Instituto Mexicano de Tecnología del Agua). Hergt, T. (2009). Diseño optimizado de redes de monitoreo de la calidad del agua de los sistemas de flujo subterráneo en el acuífero 2411 “San Luis Potosí”: Hacia un manejo sustentable, Tesis de doctorado, Universidad Autónoma de San Luis Potosí. Herrera, G. S. (1998). Cost effective groundwater quality sampling network design, Ph. D. Dissertation, University of Vermont. Herrera, G. S., & Pinder, G. F. (2005). Space-time optimization of groundwater quality sampling networks. Water Resources Research, 41, W12407. 15 pp. Herrera, G. S., Júnez-Ferreira, H. E., González, L., & Cardona, A. (2004). Diseño de una red de monitoreo de la calidad del agua para el acuífero Irapuato-Valle, Guanajuato. Memorias del XVIII Congreso Nacional de Hidráulica, AMH, SLP, México. Jazwinski, A. H. (1970). Stochastic processes and filtering theory. London: Academic. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics (p. 570). London: Academic. Jousma, G. (2008). Guideline on groundwater monitoring for general reference purposes, Report GP 2008–1. The Netherlands: International Groundwater Resources Assessment Center (IGRAC). Júnez, H. E. (2005). Diseño de una red de monitoreo de la calidad del agua para el acuífero Irapuato-Valle, Guanajuato. Tesis de Maestría, UNAM, México. Online access http://132.248.9.195/ptd2012/anteriores/0339152/Index.html. Júnez-Ferreira, H. E., & Herrera, G. S. (2013). A geostatistical methodology for the optimal design of space-time hydraulic-head monitoring-networks and its application to the Valle de Querétaro aquifer. Environmental Monitoring and Assessment, 185(4), 3527–3549. Kumar, S., Sondhi, S. K., & Phogat, V. (2005). Network design for groundwater level monitoring in Upper Bari Doab canal tract, Punjab, India. Irrigation and Drainage, 54, 431–442. Li, J., Bárdossy, A., Guenni, L., & Liu, M. (2011). A Copula based observation network design approach. Environmental Modelling & Software, 26, 1349–1357. Lin, Y., & Rouhani, S. (2001). Multiple-point variance analysis for optimal adjustment of a monitoring network. Environmental Monitoring and Assessment, 69, 239–266. Masoumi, F., & Kerachian, R. (2010). Optimal redesign of groundwater quality monitoring networks: a case study. Environmental Monitoring and Assessment, 161, 247–257. Preziosi, E., Petrangeli, A. B., & Giuliano, G. (2012). Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design. Environmental Monitoring and Assessment. doi:10.1007/s10661-012-2826-3. Samper, F. J., & Carrera, J. (1990). Geoestadística, aplicaciones a la hidrogeología subterránea. Barcelona: Centro Internacional de Métodos Numéricos en Ingeniería, Universidad Politécnica de Cataluña. SARH (Secretaría de Agricultura y Recursos Hidráulicos). (1979). Estudio geohidrológico cuantitativo de los acuíferos del Alto Lerma, Guanajuato. Geohidrología Mexicana, S.A., México. Simuta, R. (2012). Diseño óptimo de redes de monitoreo de la calidad del agua subterránea con muestreo a diferentes profundidades. Tesis de Doctorado, UNAM, México (132.248.9.195/ptd2013/junio/500017791). Yamamoto, J. (2005). Correcting the smoothing effect of ordinary kriging estimates. Mathematical Geology, 37(1), 69–94. Yeh, M. S., Lin, Y. P., & Chang, L. C. H. (2006). Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environmental Geology, 50, 101–121. Zaidi, F. K., Ahmed, S. H., Dewandel, B., & Maréchal, J. (2007). Optimizing a piezometric network in the estimation of the groundwater budget: a case study from a crystalline-rock watershed in southern India. Hidrogeology Journal, 15(6), 1131–1145.