Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions
Tài liệu tham khảo
Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343
Cannone, 1997, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13, 515, 10.4171/RMI/229
Chemin, 1999, Théorèmes d'unicité pour le systèm de Navier-Stokes tridimensionnel, J. Anal. Math., 77, 27, 10.1007/BF02791256
Charve, 2010, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198, 233, 10.1007/s00205-010-0306-x
Chemin, 1995, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differ. Equ., 121, 314, 10.1006/jdeq.1995.1131
Chen, 2010, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Commun. Pure Appl. Math., 63, 1173, 10.1002/cpa.20325
Danchin, 2000, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 579, 10.1007/s002220000078
Danchin, 2016, Fourier analysis methods for the compressible Navier-Stokes equations
Danchin, 2010, On the well-posedness of the incompressible density-dependent Euler equations in the Lp framework, J. Differ. Equ., 248, 2130, 10.1016/j.jde.2009.09.007
Danchin, 2005, On the uniqueness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differ. Equ. Appl., 12, 111, 10.1007/s00030-004-2032-2
Danchin, 2016, The incompressible limit in Lp type critical spaces, Math. Ann., 366, 1365, 10.1007/s00208-016-1361-x
Danchin, 2017, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224, 53, 10.1007/s00205-016-1067-y
Feireisl, 2001, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3, 358, 10.1007/PL00000976
Fiszdon, 1983, Existence and uniqueness of solutions of the initial boundary value problem for the flow of a baratropic viscous fluid, local in time, Arch. Mech., 35, 497
Fujita, 1964, On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 16, 269, 10.1007/BF00276188
Giga, 2003, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Anal., 1, 549
Guo, 2012, Decay of dissipative equations and negative Sobolev spaces, Commun. Partial Differ. Equ., 37, 2165, 10.1080/03605302.2012.696296
Haspot, 2011, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202, 427, 10.1007/s00205-011-0430-2
Hoff, 1995, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equ., 120, 215, 10.1006/jdeq.1995.1111
Hoff, 1995, Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44, 604, 10.1512/iumj.1995.44.2003
Huang, 2012, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Commun. Pure Appl. Math., 65, 549, 10.1002/cpa.21382
Jiang, 2003, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82, 949, 10.1016/S0021-7824(03)00015-1
Kagei, 2002, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in R3, Arch. Ration. Mech. Anal., 165, 89, 10.1007/s00205-002-0221-x
Kagei, 2005, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177, 231, 10.1007/s00205-005-0365-6
Kobayashi, 2002, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in R3, J. Differ. Equ., 184, 587, 10.1006/jdeq.2002.4158
Kobayashi, 1999, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of R3, Commun. Math. Phys., 200, 621, 10.1007/s002200050543
Kozono, 1994, Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data, Commun. Partial Differ. Equ., 19, 959, 10.1080/03605309408821042
Li, 2019, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Ann. PDE, 5, 10.1007/s40818-019-0064-5
Lions, 1998, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, vol. 10
Liu, 1998, The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions, Commun. Math. Phys., 196, 145, 10.1007/s002200050418
Matsumura, 1979, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad., Ser. A, 55, 337, 10.3792/pjaa.55.337
Matsumura, 1980, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20, 67, 10.1215/kjm/1250522322
Mitrinović, 1994
Nash, 1962, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. Fr., 90, 487, 10.24033/bsmf.1586
Okita, 2014, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differ. Equ., 257, 3850, 10.1016/j.jde.2014.07.011
Paicu, 2012, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262, 3556, 10.1016/j.jfa.2012.01.022
Ponce, 1985, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal. TMA, 9, 339, 10.1016/0362-546X(85)90001-X
Serrin, 1959, On the uniqueness of compressible fluid motion, Arch. Ration. Mech. Anal., 3, 271, 10.1007/BF00284180
Sohinger, 2014, The Boltzmann equation, Besov spaces, and optimal time decay rates in Rxn, Adv. Math., 261, 274, 10.1016/j.aim.2014.04.012
Solonnikov, 1973, Estimates of solutions to a nonstationary Navier-Stokes system, Zap. Nauchn. Semin. LOMI, 38, 153
Strain, 2006, Almost exponential decay near Maxwellian, Commun. Partial Differ. Equ., 31, 417, 10.1080/03605300500361545
Vaigant, 1995, On the existence of global solutions of two-dimensional Navier-Stokes of a compressible viscous fluids, Sib. Math. J., 36, 1108, 10.1007/BF02106835
Valli, 1982, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130, 197, 10.1007/BF01761495
Xin, 1998, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Commun. Pure Appl. Math., 51, 229, 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
Xin, 2013, On blowup of clasical solutions to the compressible Navier-Stokes equations, Commun. Math. Phys., 321, 529, 10.1007/s00220-012-1610-0
Xu, 2019, A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations, Commun. Math. Phys., 371, 525, 10.1007/s00220-019-03415-6
Xu, 2015, The optimal decay estimates on the framework of Besov spaces for generally dissipative systems, Arch. Ration. Mech. Anal., 218, 275, 10.1007/s00205-015-0860-3
Zeng, 1994, L1 Asymptotic behavior of compressible isentropic viscous 1-D flow, Commun. Pure Appl. Math., 47, 1053, 10.1002/cpa.3160470804
Zhai, 2017, Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations, J. Differ. Equ., 262, 1359, 10.1016/j.jde.2016.10.016