Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andresen B, Berry R S, Ondrechen M J, et al. Thermodynamics for processes in finite time. Acc Chem Res, 1984, 17(8): 266–271
Sieniutycz S, Salamon P. Advances in Thermodynamics. Volume 4: Finite Time Thermodynamics and Thermoeconomics. New York: Taylor & Francis, 1990
Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999
Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24(4): 327–359
Sieniutycz S. Thermodynamic limits on production or consumption of mechanical energy in practical and industry systems. Prog Energy Combust Sci, 2003, 29(3): 193–246
Hoffman K H, Burzler J, Fischer A, et al. Optimal process paths for endoreversible systems. J Non-Equilib Thermodyn, 2003, 28(3): 233–268
Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004
Wang J H, He J Z, Mao Z Y. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G-Phys Mech Astron, 2007, 50(2): 163–176
Ondrechen M J, Andresen B, Mozurkewich M, et al. Maximum work from a finite reservoir by sequential Carnot cycles. Am J Phys, 1981, 49(7): 681–685
Yan Z. Thermal efficiency of a Carnot engine at the maximum power-output with a finite thermal capacity heat reservoir (in Chinese). Chin J Eng Thermophys, 1984, 5(2): 125–131
Lee W Y, Kin S S. An analytical formula for the estimation a Rankine cycle’s heat engine efficiency at maximum power. Int J Energy Res, 1991, 15(3): 149–159
Ibrahim O M, Klein S A, Mitchell J W. Optimum heat-power cycles for specified boundary conditions. J Eng Gas Turbines Power-Trans ASME, 1991, 113(4): 514–521
Chen L, Zheng J, Sun F, et al. Power density analysis and optimization of a regenerated closed variable temperature heat reservoir Brayton cycle. J Phys D-Appl Phys, 2001, 34(11): 1727–1739
Curzon F L, Ahlborn B. Efficiency of Carnot engine at maximum power output. Am J Phys, 1975, 43(1): 22–24
Ondrechen M J, Rubin M H, Band Y B. The generalized Carnot cycles: A working fluid operating in finite time between heat sources and sinks. J Chem Phys, 1983, 78(7): 4721–4727
Yan Z, Chen L. Optimal performance of an endoreversible cycle operating between a heat source and sink of finite capacities. J Phys A-Math Gen, 1997, 30(23): 8119–8127
Yan Z, Chen L. Optimal performance of a generalized Carnot cycles for another linear heat transfer law. J Chem Phys, 1990, 92(3): 1994–1998
Xiong G, Chen J, Yan Z. The effect of heat transfer law on the performance of a generalized Carnot cycle (in Chinese). J Xiamen Univ (Nature Science), 1989, 28(5): 489–494
Chen L, Zhu X, Sun F, et al. Optimal configurations and performance for a generalized Carnot cycle assuming the heat transfer law Q ∝ (ΔT)m. Appl Energy, 2004, 78(3): 305–313
Chen L, Zhu X, Sun F, et al. Effect of mixed heat resistance on the optimal configuration and performance of a heat-engine cycle. Appl Energy, 2006, 83(6): 537–544
Chen L, Zhou S, Sun F, et al. Optimal configuration and performance of heat engines with heat leak and finite heat capacity. Open Syst Inf Dyn, 2002, 9(1): 85–96
Chen L, Sun F, Wu C. Optimal configuration of a two-heat-reservoir heat-engine with heat leak and finite thermal capacity. Appl Energy, 2006, 83(2): 71–81
Chen L, Li J, Sun F. Generalized irreversible heat-engine experiencing a complex heat-transfer law. Appl Energy, 2008, 85(1): 52–60
Li J, Chen L, Sun F. Heating load vs. COP characteristic of an endoreversible Carnot heat pump subjected to heat transfer law q ∝ (ΔT n)m. Appl Energy, 2008, 85(2–3): 96–100