Optimal bounds for Neumann eigenvalues in terms of the diameter
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. Bañuelos and K. Burdzy. On the “hot spots” conjecture of J. Rauch. J. Funct. Anal., 164(1):1–33, 1999.
D. Bucur and A. Henrot. Maximization of the second non-trivial Neumann eigenvalue. Acta Math., 222(2):337–361, 2019.
D. Bucur, E. Martinet, and E. Oudet. Maximization of Neumann eigenvalues, 2022, Arxiv arXiv:2204.11472.
S. Y. Cheng. Eigenvalue comparison theorems and its geometric applications. Math. Z., 143(3):289–297, 1975.
A. Girouard, N. Nadirashvili, and I. Polterovich. Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom., 83(3):637–662, 2009.
A. Hassannezhad, G. Kokarev, and I. Polterovich. Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound. J. Spectr. Theory, 6(4):807–835, 2016.
A. Henrot, A. Lemenant, and I. Lucardesi. An isoperimetric problem with two distinct solutions, 2022, Preprint arXiv:2210.17225.
A. Henrot and M. Michetti. A comparison between Neumann and Steklov eigenvalues. J. Spectral Theory, 2022.
A. Henrot and M. Pierre. Shape variation and optimization, volume 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2018. A geometrical analysis.
P. Kröger. On upper bounds for high order Neumann eigenvalues of convex domains in Euclidean space. Proc. Am. Math. Soc., 127(6):1665–1669, 1999.
A. Laforgia and P. Natalini. Zeros of Bessel functions: monotonicity, concavity, inequalities. Matematiche, 62(2):255–270, 2007.
J. Lamboley and A. Novruzi. Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim., 48(5):3003–3025, 2010.
H. Maurer and J. Zowe. First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program., 16:98–110, 1979.
J. Segura. Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comput., 70(235):1205–1220, 2001.
G. Szegö. Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal., 3:343–356, 1954.
H. F. Weinberger. An isoperimetric inequality for the $$N$$-dimensional free membrane problem. J. Rational Mech. Anal., 5:633–636, 1956.