Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery
Tài liệu tham khảo
Adam, 2009, Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry, ISPRS J. Photogram. Rem. Sens., 64, 612, 10.1016/j.isprsjprs.2009.04.004
Aguiar, 2013, Plant invasions in the rivers of the Iberian Peninsula, South-Western Europe – a review, Plant Biosyst., 147, 1107, 10.1080/11263504.2013.861539
Aguiar, 1996, Perception of aquatic weed problems by water resources managers. A Percepção da Vegetação Aquática Infestante pelas Entidades Gestoras dos Recursos Hídricos, Rev. Ciênc. Agr., 19, 35
Aguiar, 2007, Alien and endemic flora on reference and non-reference sites from Mediterranean type-streams of Portugal, Aquat. Conserv. Mar. Freshwater Ecosyst., 17, 335, 10.1002/aqc.776
Aksoy, 2010, Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery, IEEE Trans. Geosci. Rem. Sens., 48, 511, 10.1109/TGRS.2009.2027702
Andrew, 2008, The role of environmental context in mapping plants with hyperspectral image data, Remote Sens. Environ., 112, 4301, 10.1016/j.rse.2008.07.016
Baker, 2007, Effects of stream map resolution on measures of riparian buffer distribution and nutrient potential, Landsc. Ecol., 27, 973, 10.1007/s10980-007-9080-z
Belluco, 2006, Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing, Remote Sens. Environ., 105, 54, 10.1016/j.rse.2006.06.006
Benz, 2004, Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS J. Photogram. Rem. Sens., 58, 239, 10.1016/j.isprsjprs.2003.10.002
Blaschke, 2010, Object based image analysis for remote sensing, ISPRS J. Photogram. Rem. Sens., 65, 2, 10.1016/j.isprsjprs.2009.06.004
Breiman, 1996, Bagging predictors, Mach. Learn., 26, 123, 10.1007/BF00058655
Breiman, 1984
Canty, 2007
Canty, 2008, Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation, Remote Sens. Environ., 112, 1025, 10.1016/j.rse.2007.07.013
Canty, 2004, Automatic radiometric normalization of multitemporal satellite imagery, Remote Sens. Environ., 91, 441, 10.1016/j.rse.2003.10.024
Carleer, 2005, Assessment of very high spatial resolution satellite image segmentation, Photogramm. Eng. Rem. Sens., 71, 1285, 10.14358/PERS.71.11.1285
Congalton, 2002, Evaluating remotely sensed techniques for mapping riparian vegetation, Comput. Electron. Agric., 37, 113, 10.1016/S0168-1699(02)00108-4
Cushman, 2010, Community-level consequences of invasion: impacts of exotic clonal plants on riparian vegetation, Biol. Invasions, 12, 2765, 10.1007/s10530-009-9682-2
Desclee, 2006, Forest change detection by statistical objectbased method, Rem. Sens. Environ., 102, 1, 10.1016/j.rse.2006.01.013
Dikshit, 1996, Textural classification for ecological research using ATM images, Int. J. Remote Sens., 17, 887, 10.1080/01431169608949054
DiPietro, 2002, Mapping the invasive plant Arundo donax at Camp Pendleton Marine Base using AVIRIS
Dronova, 2011, Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China, Remote Sens. Environ., 115, 3220, 10.1016/j.rse.2011.07.006
Dudley, 2000, Arundo donax, 53
Dufour, 2013, Monitoring restored riparian vegetation: how can recent developments in remote sensing sciences help?, Knowledge Manage. Aquat. Ecosyst., 410, 10, 10.1051/kmae/2013068
Everitt, 2004, Canopy spectra of giant reed and associated vegetation, J. Range Manage., 57, 561, 10.2307/4003988
Everitt, 2008, Comparison of QuickBird and SPOT 5 satellite imagery for mapping giant reed, J. Aquat. Plant Manage., 46, 77
Fernandes, 2011, Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools, Landsc. Urban Plann., 99, 166, 10.1016/j.landurbplan.2010.11.001
Fernandes, 2013, Spectral discrimination of giant reed (Arundo donax L.): a seasonal study in riparian areas, ISPRS J. Photogram. Rem. Sens., 80, 80, 10.1016/j.isprsjprs.2013.03.007
Franklin, 2001, Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia, Int. J. Remote Sens., 22, 2627, 10.1080/01431160120769
Ge, 2008, Canopy assessment of biochemical features by ground-based hyperspectral data for an invasive species, giant reed (Arundo donax), Environ. Monit. Assess., 147, 271, 10.1007/s10661-007-0119-z
Gergel, 2007, What is the value of a good map? An example using high spatial resolution imagery to aid riparian restoration, Ecosystems, 10, 688, 10.1007/s10021-007-9040-0
Goetz, 2006, Remote sensing of riparian buffers: past progress and future prospects, J. Am. Water Resour. Assoc., 42, 133, 10.1111/j.1752-1688.2006.tb03829.x
Hamada, 2007, Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery, Remote Sens. Environ., 109, 237, 10.1016/j.rse.2007.01.003
Herrera, 2003, Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion, Biol. Invasions, 5, 167, 10.1023/A:1026190115521
Hestir, 2008, Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem, Remote Sens. Environ., 112, 4034, 10.1016/j.rse.2008.01.022
Hsieh, 2001, Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing, IEEE Trans. Geosci. Rem. Sens., 39, 2657, 10.1109/36.975000
Johansen, 2007, Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification, Remote Sens. Environ., 110, 29, 10.1016/j.rse.2007.02.014
Johnsson, 1994, Segment-based land-use classification from SPOT satellite data, Photogramm. Eng. Rem. Sens., 60, 47
Ke, 2010, Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification, Remote Sens. Environ., 114, 1141, 10.1016/j.rse.2010.01.002
Laba, 2008, Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using QuickBird satellite imagery, Remote Sens. Environ., 112, 286, 10.1016/j.rse.2007.05.003
Laba, 2010, Use of textural measurements to map invasive wetlands plants in the Hudson River National Estuarine Research with IKONOS satellite imagery, Remote Sens. Environ., 114, 876, 10.1016/j.rse.2009.12.002
Laliberte, 2004, Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico, Remote Sens. Environ., 93, 198, 10.1016/j.rse.2004.07.011
Maillard, 2003, Comparing texture analysis methods through classification, Photogramm. Eng. Rem. Sens., 69, 357, 10.14358/PERS.69.4.357
Mallinis, 2008, Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site, ISPRS J. Photogram. Rem. Sens., 63, 237, 10.1016/j.isprsjprs.2007.08.007
Möller, 2007, The comparison index: a tool for assessing the accuracy of image segmentation, Int. J. Appl. Earth Observ. Geoinf., 9, 311, 10.1016/j.jag.2006.10.002
Muller, 1997, Mapping riparian vegetation along rivers: old concepts and new methods, Aquat. Bot., 58, 411, 10.1016/S0304-3770(97)00049-1
Nielsen, 2007, The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data, IEEE Trans. Image Process., 16, 463, 10.1109/TIP.2006.888195
Nielsen, 1998, Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies, Remote Sens. Environ., 64, 1, 10.1016/S0034-4257(97)00162-4
Papazoglou, 2005, Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni, Environ. Int., 31, 243, 10.1016/j.envint.2004.09.022
Pearlstine, 2005, Textural discrimination of an invasive plant, Schinus terebinthifolius, from low altitude aerial digital imagery, Photogramm. Eng. Rem. Sens., 71, 289, 10.14358/PERS.71.3.289
Peña-Barragán, 2011, Object-based crop identification using multiple vegetation indices, textural features and crop phenology, Remote Sens. Environ., 115, 1301, 10.1016/j.rse.2011.01.009
Pengra, 2007, Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor, Remote Sens. Environ., 108, 74, 10.1016/j.rse.2006.11.002
Pinto, 2012, Distribuição de cana (Arundo donax) no Algarve e contributos para a sua gestão
Pu, 2012, A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species, Remote Sens. Environ., 124, 516, 10.1016/j.rse.2012.06.011
Puissant, 2005, The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery, Int. J. Remote Sens., 26, 733, 10.1080/01431160512331316838
Radoux, 2008, Quality assessment of segmentation results devoted to object-based classification
Robinson, 2002
Rossa, 1998, Arundo donax L. (Poaceae) – a C3 species with unusually high photosynthetic capacity, Bot. Acta, 111, 216, 10.1111/j.1438-8677.1998.tb00698.x
Sá, 2003, Assessing the feasibility of sub-pixel burned area mapping in Miombo woodlands of northern Mozambique using MODIS imagery, Int. J. Remote Sens., 24, 1783, 10.1080/01431160210144750
Safavian, 1991, A survey of decision tree classifier methodology, IEEE Trans. Syst. Man Cybern., 21, 660, 10.1109/21.97458
Schmidt, 2003, Spectral discrimination of vegetation types in a costal wetland, Remote Sens. Environ., 85, 92, 10.1016/S0034-4257(02)00196-7
Silva, 2011, Control of giant reed Arundo donax on Vila Franca do Campo Islet, Azores, Portugal, Conserv. Evid., 8, 93
Tso, 2009
Underwood, 2003, Mapping nonnative plants using hyperspectral imagery, Remote Sens. Environ., 86, 150, 10.1016/S0034-4257(03)00096-8
Underwood, 2007, A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California, Environ. Manage., 39, 63, 10.1007/s00267-005-0228-9
Vaiphasa, 2007, A hyperspectral band selector for plant species discrimination, ISPRS J. Photogram. Rem. Sens., 62, 225, 10.1016/j.isprsjprs.2007.05.006
Xie, 2008, Object-based target search using remotely sensed data: a case study in detecting invasive exotic Australian Pine in south Florida, ISPRS J. Photogram. Rem. Sens., 63, 647, 10.1016/j.isprsjprs.2008.04.003
Yamagata, 1993, Classification of wetland vegetation by texture analysis methods using ERS-1 and JERS-1 images, 1614
Yang, 2007, Integrated of remote sensing and geographic information systems in riparian vegetation delineation and mapping, Int. J. Rem. Sens., 28, 353, 10.1080/01431160600726763
Yang, 2012, Applying six classifiers to airborne hyperspectral imagery for detecting giant reed, Geocarto Int., 27, 413, 10.1080/10106049.2011.643321
Yu, 2006, Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery, Photogramm. Eng. Rem. Sens., 72, 799, 10.14358/PERS.72.7.799
Zhang, 1997, Evaluation and comparison of different segmentation algorithms, Pattern Recogn. Lett., 18, 963, 10.1016/S0167-8655(97)00083-4