Optimal and non-optimal lattices for non-completely monotone interaction potentials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)
Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)
Bétermin, L.: Two-dimensional Theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)
Bétermin, L.: Local optimality of cubic lattices for interaction energies. Anal. Math. Phys. 9(1), 403–426 (2017). https://doi.org/10.1007/s13324-017-0205-5
Bétermin, L.: Local variational study of 2d lattice energies and application to Lennard–Jones type interactions. Nonlinearity 31(9), 3973–4005 (2018)
Bétermin, L.: Minimal soft lattice theta functions. arXiv:1809.00473 (2018)
Bétermin, L.: Minimizing lattice structures for Morse potential energy in two and three dimensions. arXiv:1901.08957 (2018)
Bétermin, L., Knüpfer, H.: Optimal lattice configurations for interacting spatially extended particles. Lett. Math. Phys. 108(10), 2213–2228 (2018)
Bétermin, L., Knüpfer, H., Nolte, F.: Crystallization of one-dimensional alternating two-components systems. arXiv:1804.05743 (2018)
Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)
Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in $${\mathbb{R}}^2$$ R 2 : Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)
Blanc, X.: Geometry optimization for crystals in Thomas–Fermi type theories of solids. Commun. Partial Differ. Equ. 26(3–4), 651–696 (2001)
Blanc, X., Le Bris, C.: Periodicity of the infinite-volume ground state of a one-dimensional quantum model. Nonlinear Anal. TMA 48(6), 791–803 (2002)
Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)
Bochner, S.: Theta relations with spherical harmonics. Proc. Natl. Acad. Sci. USA 37(12), 804–808 (1951)
Brauchart, J.B., Hardin, D.P., Saff, E.B.: Discrete energy asymptotics on a Riemannian circle. Unif. Distrib. Theory 7(2), 77–108 (2012)
Cassels, J.W.S.: On a problem of Rankin about the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 4, 73–80 (1959)
Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)
Cohn, H., Kumar, A.: Counterintuitive ground states in soft-core models. Phys. Rev. E (3) 78(6), 061113 (2008). 7
Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185(3), 1017–1033 (2017)
Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290. Springer, Berlin (1999)
Coulangeon, R.: Spherical designs and zeta functions of lattices. Int. Math. Res. Not. 16, 49620 (2006)
Coulangeon, R., Lazzarini, G.: Spherical designs and heights of Euclidean lattices. J. Number Theory 141, 288–315 (2014)
Coulangeon, R., Schürmann, A.: Energy minimization, periodic sets and spherical designs. Int. Math. Res. Not. 2012(4), 829–848 (2012)
Coulangeon, R., Schürmann, A.: Local energy optimality of periodic sets. arXiv:1802.02072 (2018)
Diananda, P.H.: Notes on two lemmas concerning the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 6, 202–204 (1964)
De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)
Ennola, V.: On a problem about the Epstein Zeta-function. Math. Proc. Camb. Philos. Soc. 60, 855–875 (1964)
Flatley, L., Theil, F.: Face-centred cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 219(1), 363–416 (2015)
Gardner, C.S., Radin, C.: The infinite-volume ground state of the Lennard–Jones potential. J. Stat. Phys. 20, 719–724 (1979)
Gardner, C.S., Radin, C.: The infinite-volume ground state of the Lennard–Jones potential. J. Stat. Phys. 20(6), 719–724 (1979)
Georgakopoulos, A., Kolountzakis, M.: On particles in equilibrium on the real line. Proc. Am. Math. Soc. 145(8), 3501–3511 (2017)
Hamrick, G.C., Radin, C.: The symmetry of ground states under perturbation. J. Stat. Phys. 21(5), 601–607 (1979)
Kaplan, I.G.: Intermolecular Interactions : Physical Picture, Computational Methods, Model Potentials. Wiley, New York (2006)
Katsurada, M.: Complete asymptotic expansions associated with Epstein zeta-functions. Ramanujan J. 14, 249–272 (2007)
Kusner, R., Kusner, W., Lagarias, J.C., Shlosman, S.: The twelve spheres problem. arXiv:1611.10297 (2016)
Leblé, T.: A uniqueness result for minimizers of the 1D Log-gas renormalized energy. J. Funct. Anal. 268(7), 1649–1677 (2015)
Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)
Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)
Marcotte, E., Stillinger, F.H., Torquato, S.: Unusual ground states via monotonic convex pair potentials. Chem. Phys. 134, 164105 (2011)
Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)
Mueller, E.J., Ho, T.-L.: Two-component Bose-Einstein condensates with a large number of vortices. Phys. Rev. Lett. 88(18), 180403 (2002)
Neumann, K.: Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen mit besonderer Rücksicht auf die elektrischen Wirkungen. Teubner, Leipzig (1896)
Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)
Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16(3), 501–569 (2017)
Poole, C.: Encyclopedic Dictionary of Condensed Matter Physics, 1st edn. Elsevier, London (2004)
Radin, C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1(05n06), 1157–1191 (1987)
Rankin, R.A.: A minimum problem for the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 1, 149–158 (1953)
Rechtsman, M.C., Stillinger, F.H., Torquato, S.: Optimized interactions for targeted self-assembly: application to a honeycomb lattice. Phys. Rev. Lett. 95, 228301 (2005)
Rutkai, G., Thol, M., Span, R., Vrabec, J.: How well does the Lennard–Jones potential represent the thermodynamic properties of noble gases? Mol. Phys. 115(9–12), 1104–1121 (2017)
Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)
Sandier, E., Serfaty, S.: 1d log gases and the renormalized energy: crystallization at vanishing temperature. Prob. Theory Relat. Fields 162(3–4), 795–846 (2015)
Sarnak, P., Strömbergsson, A.: Minima of Epstein’s Zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)
Stillinger, F.H.: Lattice sums and their phase diagram implications for the classical Lennard–Jones model. J. Chem. Phys. 115(11), 5208–5212 (2001)
Torquato, S.: Inverse optimization techniques for targeted self-assembly. Soft Matter 5, 1157 (2009)
Venkov, B.: Réseaux et designs sphériques. Réseaux euclidiens, designs sphériques et formes modulaires 37, 10–86 (2001)
Ventevogel, W.J.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 92A(3–4), 343–361 (1978)
Ventevogel, W.J., Nijboer, B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 98(1–2), 274–288 (1979)
Ventevogel, W.J., Nijboer, B.R.A.: On the configuration of systems of interacting particles with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 99(3), 569–580 (1979)