Optimal Tauberian constant in Ingham’s theorem for Laplace transforms
Tóm tắt
Từ khóa
Tài liệu tham khảo
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society 306 (1988), 837–852.
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, Vol. 96, Birkhäuser/Springer, Basel, 2011.
C. J. K. Batty, A. Borichev and Y. Tomilov, Lp-tauberian theorems and Lp-rates for energy decay, Journal of Functional Analysis 270 (2016), 1153–1201.
R. Chill, Tauberian theorems for vector-valued Fourier and Laplace transforms, Studia Mathematica 128 (1998), 55–69.
R. Chill and D. Seifert, Quantified versions of Ingham’s theorem, Bulletin of the London Mathematical Society 48 (2016), 519–532.
G. Debruyne and J. Vindas, Generalization of the Wiener–Ikehara theorem, Illinois Journal of Mathematics 60 (2016), 613–624.
G. Debruyne and J. Vindas, Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior, Journal d’Analyse Mathématique, to appear, arXiv:1604.05069.
S. W. Graham and J. D. Vaaler, A class of extremal functions for the Fourier transform, Transactions of the American Mathematical Society 265 (1981), 283–302.
A. E. Ingham, On Wiener’s method in Tauberian theorems, Proceedings of the London Mathematical Society 38 (1935), 458–480.
A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Mathematische Zeitschrift 41 (1936), 367–379.
J. A. C. Kolk, On Euler numbers, Hilbert sums, Lobachevski˘ı integrals, and their asymptotics, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 14 (2003), 445–449.
J. Korevaar, On Newman’s quick way to the prime number theorem, Mathematical Intelligencer 4 (1982), 108–115.
J. Korevaar, Tauberian Theory. A Century of Developments, Grundlehren der Mathematischen Wissenschaften, Vol. 329, Springer-Verlag, Berlin, 2004.
J. Korevaar, Distributional Wiener–Ikehara theorem and twin primes, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 16 (2005), 37–49.
J. Korevaar, A Tauberian theorem for Laplace transforms with pseudofunction boundary behavior, in Complex Analysis and Dynamical Systems II, Contemporary Mathematics, Vol. 382, American Mathematical Society, Providence, RI, 2005, pp. 233–242.
B. F. Logan, Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions, SIAM Journal on Mathematical Analysis 14 (1983), 253–257.