Optimal Reinsurance via Dirac-Feynman Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baaquie BE (2007) Quantum finance: Path integrals and Hamiltonians for options and interest rates. Cambridge University press, Cambridge
Castaner A, Claramunt MM, Lefevre C (2013) Survival probabilities in bivariate risk models, with application to reinsurance. Insur: Math Econ 53:632–642
Denuit M, Vermandele C (1998) Optimal reinsurance and stop-loss order. Insur: Math Econ 22:229–233
Dickson DC, Waters HR (1996) Reinsurance and ruin. Insur: Math Econ 19:61–80
Eisenberg J, Schmidli H (2011) Minimising expected discounted capital injections by reinsurance in a classical risk model. Scand Actuar J 2011(3):155–176
Kamae T, Krengel U, O’Brien GL (1977) Stochastic inequalities on partially ordered spaces. Ann Probab 5(6):899–912
Lefevre C, Loisel S (2008) On finite-time ruin probabilities for classical risk models. Scand Actuar J 2008(1):41–60
Picard P, Lefevre C (1997) The probability of ruin in finite time with discrete claim size distribution. Scand Actuar J 1997(1):58–69
Nie C, Dickson DC, Li S (2011) Minimizing the ruin probability through capital injections. Ann Actuar Sci 5:195–209
Nie C, Dickson DC, Li S (2015) The finite time ruin probability in a risk model with capital injections. Scandinavian Actuarial Journal 2015(4):301–318
Rulliere D, Loisel S (2004) Another look at the Picard-Lefevre formula for finite-time ruin probabilities. Insur: Math Econ 35:187–203
Schmidli H (2002) On minimizing the ruin probability by investment and reinsurance. Ann Appl Probab 12:890–907
Tamturk M, Utev S (2018) Ruin probability via Quantum Mechanics Approach. Insur: Math Econ 79:69–74