Optimal Point Placement for Mesh Smoothing

Journal of Algorithms - Tập 30 - Trang 302-322 - 1999
Nina Amenta1, Marshall Bern1, David Eppstein2
1Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California, 94304
2Department of Information and Computer Science, University of California, Irvine, California, 92697-3425

Tài liệu tham khảo

Adler, 1993, A randomization scheme for speeding up algorithms for linear and convex quadratic programming problems with a high constraints-to-variables ratio, Math. Programming, 61, 39, 10.1007/BF01582137 Amato, 1994, Parallel algorithms for higher dimensional convex hulls Amenta, 1994, Helly-type theorems and generalized linear programming, Discrete Comput. Geom., 12, 241, 10.1007/BF02574379 Babuška, 1976, On the angle condition in the finite element method, SIAM J. Numer. Anal., 13, 214, 10.1137/0713021 Bajaj, 1988, The algebraic degree of geometric optimization problems, Discrete Comput. Geom., 3, 177, 10.1007/BF02187906 Bank, 1997, Mesh smoothing using a posteriori error estimates, SIAM J. Numer. Anal., 34, 921, 10.1137/S0036142994265292 Bern, 1995, Dihedral bounds for mesh generation in high dimensions Bern, 1995, Mesh generation and optimal triangulation M. Bern, P. E. Plassmann, Mesh generation, 1996 Clarkson, 1988, A Las Vegas algorithm for linear programming when the dimension is small Cockayne, 1969, Euclidean constructability in graph minimization problems, Math. Mag., 42, 206, 10.2307/2688541 D'Azevedo, 1989, On optimal interpolation triangle incidences, SIAM J. Sci. Statist. Comput., 10, 1063, 10.1137/0910064 Dharmadhikari, 1988 Dickerson, 1996, A (usually?) connected subgraph of the minimum weight triangulation Dyer, 1989, A randomized algorithm for fixed-dimensional linear programming, Math. Programming, 44, 203, 10.1007/BF01587088 Dyn, 1990, Data dependent triangulations for piecewise linear interpolation, IMA J. Numer. Anal., 10, 137, 10.1093/imanum/10.1.137 Eppstein, 1994, Approximating the minimum weight Steiner triangulation, Discrete Comput. Geom., 11, 163, 10.1007/BF02574002 Eriksson, 1990, On the measure of solid angles, Math. Mag., 63, 184, 10.2307/2691141 Freitag, 1995, An efficient parallel algorithm for mesh smoothing Freitag, 1997, A parallel algorithm for mesh smoothing L. A. Freitag, C. Ollivier-Gooch, A comparison of tetrahedral mesh improvement techniques, 1996 L. A. Freitag, C. Ollivier-Gooch, M. T. Jones, P. E. Plassmann, Scalable unstructured mesh computation, http://www.mcs.anl.gov/home/freitag/SC94demo/ Gärtner, 1995, A subexponential algorithm for abstract optimization problems, SIAM J. Comput., 24, 1018, 10.1137/S0097539793250287 Gold, 1977, Automated contour mapping using triangular element data structures and an interpolant over each irregular triangular domain Goodrich, 1993, Geometric partitioning made easier, even in parallel Klein, 1995, Hamiltonian abstract Voronoi diagrams in linear time, 834 Klein, 1993, Randomized incremental construction of abstract Voronoi diagrams, Comput. Geom. Th. Appl., 3, 157, 10.1016/0925-7721(93)90033-3 Levcopoulos, 1996, Quasi-greedy triangulations approximating the minimum weight triangulation J. Matoušek, M. Sharir, E. Welzl, A Subexponential Bound for Linear Programming, B 92-17, Freie Univ. Berlin, Fachb. Mathematik, Aug. 1992 Megiddo, 1983, Applying parallel computational algorithms in the design of sequential algorithms, J. Assoc. Comput. Mach., 30, 852, 10.1145/2157.322410 Mehlhorn, 1991, On the construction of abstract Voronoi diagrams, Discrete Comput. Geom., 6, 211, 10.1007/BF02574686 Rippa, 1992, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Anal., 29, 257, 10.1137/0729017 Rippa, 1990, Minimum energy triangulations for elliptic problems, Comput. Methods Appl. Mech. Engrg., 84, 257, 10.1016/0045-7825(90)90080-6 Strang, 1973 Weiszfeld, 1937, Sur le point pour lequel la somme des distances den, Tôhoku Math. J., 43, 355