Optimal Fractional Order IMC-Based Series Cascade Control Strategy with Dead-Time Compensator for Unstable Processes

Deep Mukherjee1, G. Lloyds Raja2, Palash Kumar Kundu3
1School of Electronics Engineering, Kalinga Institute of Industrial Technology (DU), Bhubaneswar, India
2Department of Electrical Engineering, National Institute of Technology Patna, Patna, India
3Department of Electrical Engineering, Jadavpur University, Kolkata, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Çakıroğlu, O., Güzelkaya, M., & Eksin, I. (2015). Improved cascade controller design methodology based on outer-loop decomposition. Transactions of the Institute of Measurement and Control, 37, 623–635. https://doi.org/10.1177/0142331214536202.

Dasari, P. R., Alladi, L., Rao, A. S., & Yoo, C. (2016). Enhanced design of cascade control systems for unstable processes with time delay. Journal of Process Control, 45, 43–54. https://doi.org/10.1016/j.jprocont.2016.06.008.

Efe, M. (2011). Fractional order systems in industrial automation: A survey. IEEE Transactions on Industrial Informatics, 7, 582–591. https://doi.org/10.1109/TII.2011.2166775.

Garcia, C. E., & Morari, M. (1982). Internal model control: A unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development, 21, 308–323. https://doi.org/10.1021/i200017a016.

García, P., Santos, T., Normey-Rico, J. E., & Albertos, P. (2010). Smith predictor-based control schemes for dead-time unstable cascade processes. Industrial & Engineering Chemistry Research, 49, 11471–21181. https://doi.org/10.1021/ie1009958.

Jeng, J. C. (2014). Simultaneous closed-loop tuning of cascade controllers based directly on set-point step-response data. Journal of Process Control, 24, 652–662. https://doi.org/10.1016/j.jprocont.2014.03.007.

Jeng, J. C., & Lee, M. W. (2012). Simultaneous automatic tuning of cascade control systems from closed-loop step response data. Journal of Process Control, 22, 1020–1033. https://doi.org/10.1021/ie401978p.

Jeng, J. C., & Liao, S. J. (2013). A simultaneous tuning method for cascade control systems based on direct use of plant data. Industrial & Engineering Chemistry Research, 52, 16820–16831. https://doi.org/10.1021/ie401978p.

Kaya, I., & Atherton, D. P. (2008). Use of smith predictor in the outer loop for cascaded Control of unstable and integrating processes. Industrial & Engineering Chemistry Research., 47, 1981–1987. https://doi.org/10.1021/ie070775h.

Kaya, I., & Nalbantoğlu, M. (2016). Simultaneous tuning of cascaded controller design using genetic algorithm. Electrical Engineering, 98, 299–305. https://doi.org/10.1007/s00202-016-0367-4.

Lee, Y., Oh, S., & Park, S. (2002). Enhanced control with a general cascade control structure. Industrial & Engineering Chemistry Research, 41, 2679–2688. https://doi.org/10.1007/s11768-013-2254-0.

Liu, T., Gu, D., & Zhang, W. D. (2005a). Decoupling two-degree-of-freedom control strategy for cascade control systems. Journal of Process Control, 15, 159–167. https://doi.org/10.1016/j.jprocont.2004.06.001.

Liu, T., Zhang, W., & Gu, D. (2005b). IMC-based control strategy for open-loop unstable cascade processes. Industrial & Engineering Chemistry Research, 44, 900–909. https://doi.org/10.1021/ie049203c.

Loverro A (2004) Fractional calculus: history, definitions and applications for the engineer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering: 1–28.

Morari, M., & Zafiriou, E. (1989). Robust process control. Englewood Cliffs, NJ: Prentice Hall.

Nandong, J., & Zang, Z. (2014). Generalized multi-scale control scheme for cascade processes with time-delays. Journal of Process Control, 24, 1057–1067. https://doi.org/10.1016/j.jprocont.2014.05.012.

Padhan, D. G., & Majhi, S. (2012). Modified smith predictor based cascade control of unstable time delay processes. ISA Transactions, 51, 95–104. https://doi.org/10.1016/j.isatra.2011.08.002.

Padhan, D. G., & Majhi, S. (2013). Enhanced cascade control for a class of integrating processes with time delay. ISA Transactions, 52, 45–55. https://doi.org/10.1016/j.isatra.2012.08.004.

Pampara, G., & Engelbrecht, A. P. (2011). Binary artificial bee colony optimization. In IEEE symposium on swarm intelligence, Paris (pp. 24–35). https://doi.org/10.1109/SIS.2011.5952562

Pashaei, S., & Bagheri, P. (2020). Parallel cascade control of dead time processes via fractional order controllers based on Smith predictor. ISA transactions, 98, 186–197. https://doi.org/10.1016/j.isatra.2019.08.047.

Raja, G. L., & Ali, A. (2017a). Series cascade control: an outline survey. In Proceedings of third IEEE Indian control conference (ICC), Guwahat (pp. 409–414).

Raja, G. L., & Ali, A. (2017b). Smith predictor based parallel cascade control strategy for unstable and integrating processes with large time delay. Journal of Process Control, 52, 57–65. https://doi.org/10.1016/j.jprocont.2017.01.007.

Santosh, S., & Chidambaram, M. (2013). A simple method of tuning series cascade controllers for unstable systems. Journal of Control Theory and Applications, 11, 661–667. https://doi.org/10.1007/s11768-013-2254-0.

Seborg, D. E, Edgar, T. F, & Doyle III F. J. (2010). Process dynamics and control. Hoboken

Uma, S., Chidambaram, M., & Rao, S. (2009). Enhanced control of unstable cascade processes with time delays using a modified smith predictor. Industrial & Engineering Chemistry Research, 48, 3098–3111. https://doi.org/10.1021/ie801590e.

Uma, S., Chidambaram, M., Rao, A. S., & Yoo, C. (2010). Enhanced control of integrating cascade processes with time delays using modified smith predictor. Chemical Engineering Science, 65, 1065–1075. https://doi.org/10.1016/j.ces.2009.09.061.

Veronesi, M., & Visioli, A. (2011). Simultaneous closed-loop automatic tuning method for cascade controllers. IET Control Theory and Applications, 5, 263–270. https://doi.org/10.1049/iet-cta.2010.0082.

West, B. J. (2014). Colloquium: Fractional calculus view of complexity: A tutorial. Reviews of Modern Physics, 86, 1169. https://doi.org/10.1103/RevModPhys.86.1169.

Yin, C. Q., Hui, H. Z., Yue, J. G., Gao, J., & Zheng, L. P. (2012). Cascade control based on minimum sensitivity in outer loop for processes with time delay. Journal of Central South University, 19, 2689–2696. https://doi.org/10.1007/s11771-012-1328-3.

Yin, C. Q., Wang, H. T., Sun, Q., & Zhao, L. (2019). Improved cascade control system for a class of unstable processes with time delay. International Journal of Control, Automation and Systems, 17, 126–135. https://doi.org/10.1007/s12555-018-0096-8.

Zhang, J., Ren, M., Yue, H., & Zhou, S. (2016). Adaptive neural network cascade control system with entropy-based design. IET Control Theory & Applications, 10, 1151–1160. https://doi.org/10.1049/iet-cta.2015.0992.