Optimal Fractional Order IMC-Based Series Cascade Control Strategy with Dead-Time Compensator for Unstable Processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Çakıroğlu, O., Güzelkaya, M., & Eksin, I. (2015). Improved cascade controller design methodology based on outer-loop decomposition. Transactions of the Institute of Measurement and Control, 37, 623–635. https://doi.org/10.1177/0142331214536202.
Dasari, P. R., Alladi, L., Rao, A. S., & Yoo, C. (2016). Enhanced design of cascade control systems for unstable processes with time delay. Journal of Process Control, 45, 43–54. https://doi.org/10.1016/j.jprocont.2016.06.008.
Efe, M. (2011). Fractional order systems in industrial automation: A survey. IEEE Transactions on Industrial Informatics, 7, 582–591. https://doi.org/10.1109/TII.2011.2166775.
Garcia, C. E., & Morari, M. (1982). Internal model control: A unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development, 21, 308–323. https://doi.org/10.1021/i200017a016.
García, P., Santos, T., Normey-Rico, J. E., & Albertos, P. (2010). Smith predictor-based control schemes for dead-time unstable cascade processes. Industrial & Engineering Chemistry Research, 49, 11471–21181. https://doi.org/10.1021/ie1009958.
Jeng, J. C. (2014). Simultaneous closed-loop tuning of cascade controllers based directly on set-point step-response data. Journal of Process Control, 24, 652–662. https://doi.org/10.1016/j.jprocont.2014.03.007.
Jeng, J. C., & Lee, M. W. (2012). Simultaneous automatic tuning of cascade control systems from closed-loop step response data. Journal of Process Control, 22, 1020–1033. https://doi.org/10.1021/ie401978p.
Jeng, J. C., & Liao, S. J. (2013). A simultaneous tuning method for cascade control systems based on direct use of plant data. Industrial & Engineering Chemistry Research, 52, 16820–16831. https://doi.org/10.1021/ie401978p.
Kaya, I., & Atherton, D. P. (2008). Use of smith predictor in the outer loop for cascaded Control of unstable and integrating processes. Industrial & Engineering Chemistry Research., 47, 1981–1987. https://doi.org/10.1021/ie070775h.
Kaya, I., & Nalbantoğlu, M. (2016). Simultaneous tuning of cascaded controller design using genetic algorithm. Electrical Engineering, 98, 299–305. https://doi.org/10.1007/s00202-016-0367-4.
Lee, Y., Oh, S., & Park, S. (2002). Enhanced control with a general cascade control structure. Industrial & Engineering Chemistry Research, 41, 2679–2688. https://doi.org/10.1007/s11768-013-2254-0.
Liu, T., Gu, D., & Zhang, W. D. (2005a). Decoupling two-degree-of-freedom control strategy for cascade control systems. Journal of Process Control, 15, 159–167. https://doi.org/10.1016/j.jprocont.2004.06.001.
Liu, T., Zhang, W., & Gu, D. (2005b). IMC-based control strategy for open-loop unstable cascade processes. Industrial & Engineering Chemistry Research, 44, 900–909. https://doi.org/10.1021/ie049203c.
Loverro A (2004) Fractional calculus: history, definitions and applications for the engineer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering: 1–28.
Morari, M., & Zafiriou, E. (1989). Robust process control. Englewood Cliffs, NJ: Prentice Hall.
Nandong, J., & Zang, Z. (2014). Generalized multi-scale control scheme for cascade processes with time-delays. Journal of Process Control, 24, 1057–1067. https://doi.org/10.1016/j.jprocont.2014.05.012.
Padhan, D. G., & Majhi, S. (2012). Modified smith predictor based cascade control of unstable time delay processes. ISA Transactions, 51, 95–104. https://doi.org/10.1016/j.isatra.2011.08.002.
Padhan, D. G., & Majhi, S. (2013). Enhanced cascade control for a class of integrating processes with time delay. ISA Transactions, 52, 45–55. https://doi.org/10.1016/j.isatra.2012.08.004.
Pampara, G., & Engelbrecht, A. P. (2011). Binary artificial bee colony optimization. In IEEE symposium on swarm intelligence, Paris (pp. 24–35). https://doi.org/10.1109/SIS.2011.5952562
Pashaei, S., & Bagheri, P. (2020). Parallel cascade control of dead time processes via fractional order controllers based on Smith predictor. ISA transactions, 98, 186–197. https://doi.org/10.1016/j.isatra.2019.08.047.
Raja, G. L., & Ali, A. (2017a). Series cascade control: an outline survey. In Proceedings of third IEEE Indian control conference (ICC), Guwahat (pp. 409–414).
Raja, G. L., & Ali, A. (2017b). Smith predictor based parallel cascade control strategy for unstable and integrating processes with large time delay. Journal of Process Control, 52, 57–65. https://doi.org/10.1016/j.jprocont.2017.01.007.
Santosh, S., & Chidambaram, M. (2013). A simple method of tuning series cascade controllers for unstable systems. Journal of Control Theory and Applications, 11, 661–667. https://doi.org/10.1007/s11768-013-2254-0.
Seborg, D. E, Edgar, T. F, & Doyle III F. J. (2010). Process dynamics and control. Hoboken
Uma, S., Chidambaram, M., & Rao, S. (2009). Enhanced control of unstable cascade processes with time delays using a modified smith predictor. Industrial & Engineering Chemistry Research, 48, 3098–3111. https://doi.org/10.1021/ie801590e.
Uma, S., Chidambaram, M., Rao, A. S., & Yoo, C. (2010). Enhanced control of integrating cascade processes with time delays using modified smith predictor. Chemical Engineering Science, 65, 1065–1075. https://doi.org/10.1016/j.ces.2009.09.061.
Veronesi, M., & Visioli, A. (2011). Simultaneous closed-loop automatic tuning method for cascade controllers. IET Control Theory and Applications, 5, 263–270. https://doi.org/10.1049/iet-cta.2010.0082.
West, B. J. (2014). Colloquium: Fractional calculus view of complexity: A tutorial. Reviews of Modern Physics, 86, 1169. https://doi.org/10.1103/RevModPhys.86.1169.
Yin, C. Q., Hui, H. Z., Yue, J. G., Gao, J., & Zheng, L. P. (2012). Cascade control based on minimum sensitivity in outer loop for processes with time delay. Journal of Central South University, 19, 2689–2696. https://doi.org/10.1007/s11771-012-1328-3.
Yin, C. Q., Wang, H. T., Sun, Q., & Zhao, L. (2019). Improved cascade control system for a class of unstable processes with time delay. International Journal of Control, Automation and Systems, 17, 126–135. https://doi.org/10.1007/s12555-018-0096-8.