Optimal Control on the Heisenberg Group

Springer Science and Business Media LLC - Tập 5 - Trang 473-499 - 1999
F. Monroy-Pérez1, A. Anzaldo-Meneses1
1Universidad Autonoma Metropolitana-Azcapotzalco, Azcapotzalco, Mexico D.F.

Tóm tắt

Let H denote either the Heisenberg group $${\mathbb{R}}^{2n+1}$$ , or the Cartesian product of n copies of the three-dimensional Heisenberg group $${\mathbb{R}}^3$$ . Let {X 1, Y 1, ...;, X n, Y n} be an independent set of left-invariant vector fields on H. In this paper, we study the left-invariant optimal control problem on H with the dynamics $$\dot q(t) = \sum\limits_{i=1}^n {u_i (t)X_i (q(t)) + v_i (t)Y(q(t))},$$ the cost functional $$\Lambda (q,u) = \frac{1}{2}\int {\sum\limits_{i=1}^n {\mu_i (u_i^2 + v_i^2 )}},$$ with arbitrary positive parameters μ1, ...;, μ n , and admissible controls taken from the set of measurable functions $$t \mapsto u\left(t \right)= \left({u_1 \left(t \right),v_1 \left(t \right), \ldots ,u_n \left(t \right),v_n \left(t \right)} \right).$$ The above control system is encoded either in the kernel of a contact 1-form (for $${\mathbb{R}}^{2n+1}$$ ), or in the kernel of a Pfaffian system (for $${\mathbb{R}}^3n$$ ). In both cases, the action of the semi-direct product of the torus T n with H describe the symmetries of the problem. The Pontryagin maximum principle provides optimal controls; extremal trajectories are solutions to the Hamiltonian system associated with the problem. Abnormal extremals (which do not depend on the cost functional) yield solutions that are geometrically irrelevant. An explicit integration of the extremal equations provides a tool for studying some aspects of the sub-Riemannian structure defined on H by means of the above optimal control problem.

Từ khóa


Tài liệu tham khảo

R. W. Brockett, Control theory and singular Riemannian geometry. In: New Directions in Applied Mathematics (P. J. Hilton and G. S. Young, Eds.) Springer-Verlag, 1981.

E. Alaoui, J. P. Gauthier, and I. Kupka, Small sub-Riemannian balls in R3. J. Dynam. Control Syst. 2 (1996), No. 3, 359–421.

B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977), 94–153.

W. Liu and H. Sussmann, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc. 118 (1995), No. 564.

A. Anzaldo-Meneses and F. Monroy-Pérez, On nonholonomic constraints and sub-Riemannian geometry. Preprint.

A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, Geometry of distributions and variational problems. In: Encycl. Math. Sci., Vol. 16 (Dynamical systems-VII), (V. I. Arnold and S. P. Novikov, Eds.) Springer-Verlag, 1994.

B. V. Ayala, Controllability of nilpotent systems. In: Geometry in nonlinear control and differential inclusions (B. Jakubczyk, W. Respondek, and T. Rzezuchovski, Eds.), Banach Center Publications, Warszawa 32 (1995) 35–46.

B. Bonnard, M. Chyba, and H. Heutte, Contrôle optimal géometrique appliqué. Rapport de Recherche, No. 73, Laboratoire de Topologie, Université de Bourgogne, 1995.

V. Jurdjevic, Geometric control theory. Cambridge University Press, 1996.

L. Pontryagin, V. Boltiansky, R. Gamkrelidze, and E. Mishchenko, The mathematical theory of optimal processes. Wiley, New York, 1962.

I. Kupka, Géométrie sous-Riemanniene. Séminaire Bourbaki, 1996.

A. A. Agrachev, Exponential mappings for contact sub-Riemannian structures, J. Dynam. Control Syst. 2 (1996), No. 3, 321–358.