Optimal Control on the Heisenberg Group
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. W. Brockett, Control theory and singular Riemannian geometry. In: New Directions in Applied Mathematics (P. J. Hilton and G. S. Young, Eds.) Springer-Verlag, 1981.
E. Alaoui, J. P. Gauthier, and I. Kupka, Small sub-Riemannian balls in R3. J. Dynam. Control Syst. 2 (1996), No. 3, 359–421.
B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977), 94–153.
W. Liu and H. Sussmann, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc. 118 (1995), No. 564.
A. Anzaldo-Meneses and F. Monroy-Pérez, On nonholonomic constraints and sub-Riemannian geometry. Preprint.
A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, Geometry of distributions and variational problems. In: Encycl. Math. Sci., Vol. 16 (Dynamical systems-VII), (V. I. Arnold and S. P. Novikov, Eds.) Springer-Verlag, 1994.
B. V. Ayala, Controllability of nilpotent systems. In: Geometry in nonlinear control and differential inclusions (B. Jakubczyk, W. Respondek, and T. Rzezuchovski, Eds.), Banach Center Publications, Warszawa 32 (1995) 35–46.
B. Bonnard, M. Chyba, and H. Heutte, Contrôle optimal géometrique appliqué. Rapport de Recherche, No. 73, Laboratoire de Topologie, Université de Bourgogne, 1995.
V. Jurdjevic, Geometric control theory. Cambridge University Press, 1996.
L. Pontryagin, V. Boltiansky, R. Gamkrelidze, and E. Mishchenko, The mathematical theory of optimal processes. Wiley, New York, 1962.
I. Kupka, Géométrie sous-Riemanniene. Séminaire Bourbaki, 1996.
A. A. Agrachev, Exponential mappings for contact sub-Riemannian structures, J. Dynam. Control Syst. 2 (1996), No. 3, 321–358.