Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Klasky S, Abbasi H, Logan J, Parashar M, Schwan K, Shoshani A et al (2011) In situ data processing for extreme scale computing. In: Proceedings of SciDAC 2011
Evans LC (2010) Partial differential equations, graduate studies in mathematics. American Mathematical Society, Providence
Gersho A, Gray RM (2012) Vector quantization and signal compression. Springer, New York
Lindstrom P (2014) Fixed-rate compressed floating-point arrays. IEEE Trans Vis Comput Graph 20(12):2674–2683
Lehmann H, Jung B (2014) In-situ multi-resolution and temporal data compression for visual exploration of large-scale scientific simulations. In: IEEE 4th symposium on large data analysis and visualization (LDAV), Paris, France
Lakshminarasimhan S, Zou X, Boyuka DA, Pendse SV, Jenkins J, Vishwanath V, Papka ME, Klasky S, Samatova NF (2014) DIRAQ: scalable in situ data-and resource-aware indexing for optimized query performance. Clust Comput 17(4):1101–1119
Bernardon FF, Callahan SP, Comba JLD, Silva CT (2005) Rendering of time-varying scalar fields on unstructured meshes. Technical report, Lawrence Radiation Laboratory
Zhao K, Sakamoto N, Koyamada K (2015) Time-varying volume compression in spatio-temporal domain. J Adv Simul Sci Eng 1(1):171–187
Austin W, Ballard G, Kolda TG (2016) Parallel tensor compression for large-scale scientific data. Technical report. arXiv:1510.06689v2
Sen P, Darabi S (2011) Compressive rendering: a rendering application of compressed sensing. IEEE Trans Vis Comput Graph 17(4):487–499
Xu X, Sakhaee E, Entezari A (2014) Volumetric data reduction in a compressed sensing. Comput Graph Forum 33(3):111–120
Yu H, Wang C, Grout RW, Chen JH, Ma K (2010) In situ visualization for large-scale combustion simulations. IEEE Comput Graph Appl 30(3):45–57
Sauer F, Yu H, Ma K (2013) An analytical framework for particle and volume data of large-scale combustion simulations. In: Proceedings of the 8th international workshop on ultrascale visualization. ACM, New York, USA
Fabian N, Moreland K, Thompson D, Bauer AC, Marion P, Geveci B, Rasquin M, Jansen KE (2011) The paraview coprocessing library: a scalable, general purpose in situ visualization library. In: 2011 IEEE symposium on large data analysis and visualization (LDAV)
Woodring J, Ahrens J, Figg J, Wendelberger J, Habib S, Heitmann K (2011) In situ sampling of a large scale particle simulation for interactive visualization and analysis. SIAM J Math Anal 30(3):1151–1160
Bennett JC, Comandur S, Pinar A, Thompson D (2013) Sublinear algorithms for in-situ and in-transit data analysis at the extreme-scale. In: DOE workshop on applied mathematics research for exascale computing, Washington, DC, USA
Alpert B, Beylkin G, Coifman R, Rokhlin V (1993) Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J Sci Comput 14(1):159–184
Pogossova E, Egiazarian K, Gotchev A, Astola J (2005) Tree-structured legendre multi-wavelets. In: Computer aided systems theory EUROCAST 2005. Volume 3643 of lecture notes in computer science. Springer, pp 291–300
Donoho DL, Tsaig Y, Drori I, Starck J-L (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121
Candes E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30
Jansen M, Oonincx P (2005) Second generation wavelets and applications. Springer, New York
Sweldens W (1998) The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29(2):511–546
Maggioni M, Bremer JC, Coifman RR, Szlam AD (2005) Biorthogonal diffusion wavelets for multiscale representations on manifolds and graphs. In: Proceedings of SPIE 5914, Wavelets XI, 59141M, San Diego, USA
Alpert BK (1993) A class of bases in L$$^2$$ for the sparse representation of integral operators. SIAM J Math Anal 24(1):246–262
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, Cambridge
Lodhi MA, Voronin S, Bajwa WU (2016) YAMPA: yet another matching pursuit algorithm for compressive sensing. In: Proceedings of SPIE 9857, compressive sensing V: from diverse modalities to big data analytics, 98570E, Baltimore, USA
Yin P, Esser E, Xin J (2014) Ratio and difference of $${L}_1$$ and $${L}_2$$ norms and sparse representation with coherent dictionaries. Commun Inf Syst 14(2):87–109
Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the Trilinos project. ACM Trans Math Softw 31(3):397–423
Ayachit U (2015) The paraview guide: a parallel visualization application. Kitware, Clifton Park
Swinzip v1.0 (2016) A Matlab and C++ library for scientific lossy data compression and reconstruction using compressed sensing and tree-wavelets transforms. Sandia National Laboratories. http://www.sandia.gov/~mnsallo/swinzip/swinzip-v1.0.tgz
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122
Yin W, Osher S, Goldfarb D, Darbon J (2008) Bregman iterative algorithms for $$\ell _1$$-minimization with applications to compressed sensing. SIAM J Imaging Sci 1(1):143–168
Needell D, Tropp JA (2010) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun ACM 57(12):93–100
Wright SJ, Nowak RD, Figueiredo MAT (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493
Lakshminarasimhan S, Zou X, Boyuka DA II, Pendse SV, Jenkins J, Vishwanath V, Papka ME, Klasky S, Samatova NF (2014) DIRAQ: scalable in situ data-and resource-aware indexing for optimized query performance. Clust Comput 14(4):1101–1119
Kokjohn SL, Hanson RM, Splitter DA, Reitz RD (2011) Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 12:209–226
Bhagatwala A, Sankaran R, Kokjohn S, Chen JH. Numerical investigation of spontaneous flame propagation under RCCI conditions. Combust Flame (under review)
Safta C, Blaylock M, Templeton J, Domino S, Sargsyan K, Najm H (2016) Uncertainty quantification in LES of channel flow. Int J Numer Methods Fluids 83:376–401
Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
Salloum M, Templeton J (2014) Inference and uncertainty propagation of atomistically-informed continuum constitutive laws, part 1: Bayesian inference of fixed model forms. Int J Uncertain Quantif 4(2):151–170
Wang C, Ma K-L (2008) A statistical approach to volume data quality assessment. IEEE Trans Vis Comput Graph 14(3):590–602
Salloum M, Bennett JC, Pinar A, Bhagatwala A, Chen JH (2015) Enabling adaptive scientific workflows via trigger detection. In: Proceedings of the first workshop on in situ infrastructures for enabling extreme-scale analysis and visualization, pp 41–45
Chen JH, Choudhary A, De Supinski B, DeVries M, Hawkes ER, Klasky S, Liao WK, Ma KL, Mellor-Crummey J, Podhorszki N et al (2009) Terascale direct numerical simulations of turbulent combustion using S3D. Comput Sci Discov 2(1):015001
zfp & fpzip (2015) Floating point compression. Lawrence Livermore National Laboratories. http://computation.llnl.gov/projects/floating-point-compression/download/zfp-0.4.1.tar.gz