Sự kết hợp tối ưu của các dấu hiệu thần kinh nội tiết để phát hiện các khối u thần kinh nội tiết độ cao ở đường hô hấp trên và phổi

Current Oncology Reports - Tập 25 - Trang 1-10 - 2022
Annikka Weissferdt1,2, Boris Sepesi2, Jing Ning3, Mario Hermsen4, Renata Ferrarotto5, Bonnie Glisson5, Ehab Hanna6, Diana Bell7
1Department of Pathology, MD Anderson Cancer Center, Houston, USA
2Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, USA
3Department of Biostatistics, MD Anderson Cancer Center, Houston, USA
4Head and Neck Oncology, University Hospital of Oviedo, Oviedo, Spain
5Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, USA
6Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, USA
7Department of Pathology and Head and Neck Disease Team Alignment, City of Hope Comprehensive Cancer Center, Duarte, USA

Tóm tắt

Việc xác định sự phân hóa thần kinh nội tiết (NE) rất quan trọng trong việc phân loại các khối u ở đầu và cổ (HN) cũng như phổi. Kết hợp với hình thái học của khối u, tài liệu nhuộm miễn dịch hóa mô học (IHC) về sự phân hóa NE là cần thiết cho chẩn đoán các khối u NE. Mục đích của nghiên cứu này là xác định độ nhạy và mức độ tương đồng của hai dấu hiệu NE mới (mASH1, INSM1) trong một nhóm các khối u NE độ cao của đường hô hấp trên và phổi, và so sánh khả năng biểu hiện của chúng với việc sử dụng rộng rãi các dấu hiệu NE truyền thống, như synaptophysin (SYN) và chromogranin A (CGA). Thêm vào đó, biểu hiện của PARP1 cũng được xem xét như một mục tiêu điều trị tiềm năng mới. Ba mươi chín khối u NE độ cao, 23 khối u ở HN và 16 khối u ở phổi, đã được đánh giá lại bởi hai bác sĩ bệnh học chuyên về HN và lồng ngực, và sau đó đã được nhuộm với mASH1, INSM1 và PARP1. Độ nhạy và mức độ tương đồng của tất cả các tổ hợp dấu hiệu khả thi đã được đánh giá. Độ nhạy (sai số chuẩn) được báo cáo như sau: mASH1 41% (0.08), INSM1 44% (0.08), SYN 56% (0.08) và CGA 42% (0.09); tổ hợp của cả bốn dấu hiệu NE: 73% (0.08). Độ nhạy và sai số chuẩn cho PARP1 lần lượt là 90% và 0.05. Độ nhạy cao nhất để phát hiện sự phân hóa NE trong các khối u NE độ cao ở HN và khu vực lồng ngực đạt được với sự kết hợp của bốn dấu hiệu NE. Mức độ tương đồng trung bình đã được tìm thấy với các tổ hợp của mASH1 và INSM1 và các dấu hiệu NE truyền thống, tương ứng. Sự biểu hiện quá mức ổn định của PARP1 trong các khối u độ cao có sự phân hóa NE ở HN và phổi mở ra khả năng cho các thử nghiệm với chất ức chế PARP1.

Từ khóa

#khối u thần kinh nội tiết #dấu hiệu thần kinh nội tiết #đánh giá độ nhạy #liệu pháp điều trị #nhuộm miễn dịch hóa mô học

Tài liệu tham khảo

Bell D. Sinonasal neuroendocrine neoplasms: current challenges and advances in diagnosis and treatment, with a focus on olfactory neuroblastoma. Head Neck Pathol. 2018;12:22–30. Bell D, Hanna EY, Weber RS, DeMonte F, Triantafyllou A, Lewis JS, Jr., Cardesa A, Slootweg PJ, Stenman G, Gnepp DR, Devaney KO, Rodrigo JP, Rinaldo A, Wenig BM, Westra WH, Bishop JA, Hellquist H, Hunt JL, Kusafuka K, Perez-Ordonez B, Williams MD, Takes RP, Ferlito A: Neuroendocrine neoplasms of the sinonasal region. Head Neck 2016, 38 Suppl 1:E2259–66. Tumor behavior varies within the spectrum of sinonasal tumors with neuroendocrine differentiation, and a broad distinction should be made between tumors of neuroectodermal origin, e.g., olfactory neuroblastoma [ONB]) and those of epithelial origin (e.g., sinonasal neuroendocrine carcinoma (SNEC). Bell D, Franchi A, Gillison M, et al. Olfactory neuroblastoma. In: El-Naggar A, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors., et al., WHO Classification of Head and Neck Tumors. Lyon, Franc: International Agency for Research on Cancer; 2017. p. 57–9. Thompson LDR, Bell D, Bishop JA. Neuroendocrine carcinoma. In: El-Naggar A, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors. WHO Classification of Head and Neck Tumors. Lyon, Franc: International Agency for Research on Cancer; 2017. p. 21–3. Rindi G, Mete O, Ucella S, Basturk O, La Rosa S, et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr Pathol. 2022;33(1):115–54. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I, Panel WHO. The 2015 World Health Organization Classification of Lung Tumors: impact of genetic, clinical and radiologic advances since the 2004 Classification. J Thorac Oncol. 2015;10:1243–60. Rooper LM, Sharma R, Li QK, Illei PB, Westra WH. INSM1 demonstrates superior performance to the individual and combined use of synaptophysin, chromogranin and CD56 for diagnosing neuroendocrine tumors of the thoracic cavity. Am J Surg Pathol. 2017;41:1561–9. Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron. 2019;102(1053–65): e4. Nicholson SA, Ryan MR. A review of cytologic findings in neuroendocrine carcinomas including carcinoid tumors with histologic correlation. Cancer. 2000;90:148–61. Tanaka Y, Ogawa H, Uchino K, Ohbayashi C, Maniwa Y, Nishio W, Nakao A, Yoshimura M. Immunohistochemical studies of pulmonary large cell neuroendocrine carcinoma: a possible association between staining patterns with neuroendocrine markers and tumor response to chemotherapy. J Thorac Cardiovasc Surg. 2013;145:839–46. Wick MR, Berg LC, Hertz MI: Large cell carcinoma of the lung with neuroendocrine differentiation. A comparison with large cell "undifferentiated" pulmonary tumors. Am J Clin Pathol 1992, 97:796–805. Hamanaka W, Motoi N, Ishikawa S, Ushijima M, Inamura K, Hatano S, Uehara H, Okumura S, Nakagawa K, Nishio M, Horai T, Aburatani H, Matsuura M, Iwasaki A, Ishikawa Y. A subset of small cell lung cancer with low neuroendocrine expression and good prognosis: a comparison study of surgical and inoperable cases with biopsy. Hum Pathol. 2014;45:1045–56. Doxtader EE, Mukhopadhyay S. Insulinoma-associated protein 1 is a sensitive and specific marker of neuroendocrine lung neoplasms in cytology specimens. Cancer Cytopathol. 2018;126:243–52. Derks JL, Dingemans AC, van Suylen RJ, den Bakker MA, Damhuis RAM, van den Broek EC, Speel EJ, Thunnissen E. Is the sum of positive neuroendocrine immunohistochemical stains useful for diagnosis of large cell neuroendocrine carcinoma (LCNEC) on biopsy specimens? Histopathology. 2019;74:555–66. • Altree-Tacha D, Tyrrell J, Li F: mASH1 is highly specific for neuroendocrine carcinomas: an immunohistochemical evaluation on normal and various neoplastic tissues. Arch Pathol Lab Med 2017, 141:288–92. mASH1 could be used as a marker to distinguish high grade NEC from carcinoid tumors and non-NE neoplasm. Kuji S, Watanabe R, Sato Y, Iwata T, Hirashima Y, Takekuma M, Ito I, Abe M, Nagashio R, Omae K, Aoki D, Kameya T. A new marker, insulinoma-associated protein 1 (INSM1), for high-grade neuroendocrine carcinoma of the uterine cervix: analysis of 37 cases. Gynecol Oncol. 2017;144:384–90. Rosenbaum JN, Guo Z, Baus RM, Werner H, Rehrauer WM, Lloyd RV. INSM1: A novel immunohistochemical and molecular marker for neuroendocrine and neuroepithelial neoplasms. Am J Clin Pathol. 2015;144:579–91. Ye B, Cappel J, Findeis-Hosey J, McMahon L, Yang Q, Xiao GQ, Xu H, Li F. hASH1 is a specific immunohistochemical marker for lung neuroendocrine tumors. Hum Pathol. 2016;48:142–7. Mhawech P, Berczy M, Assaly M, Herrmann F, Bouzourene H, Allal AS, Dulguerov P, Schwaller J. Human achaete-scute homologue (hASH1) mRNA level as a diagnostic marker to distinguish esthesioneuroblastoma from poorly differentiated tumors arising in the sinonasal tract. Am J Clin Pathol. 2004;122:100–5. Taggart MW, Hanna EY, Gidley P, Weber RS, Bell D. Achaete-scute homolog 1 expression closely correlates with endocrine phenotype and degree of differentiation in sinonasal neuroendocrine tumors. Ann Diagn Pathol. 2015;19:154–6. Ball DW. Achaete-scute homolog-1 and Notch in lung neuroendocrine development and cancer. Cancer Lett. 2004;204:159–69. Fahling M, Mrowka R, Steege A, Kirschner KM, Benko E, Forstera B, Persson PB, Thiele BJ, Meier JC, Scholz H. Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem. 2009;284:4255–66. Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, Nelkin BD, Ball DW. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res. 2009;69:845–54. • La Rosa S, Marando A, Gatti G, Rapa I, Volante M, Papotti M, Sessa F, Capella C: Achaete-scute homolog 1 as a marker of poorly differentiated neuroendocrine carcinomas of different sites: a validation study using immunohistochemistry and quantitative real-time polymerase chain reaction on 335 cases. Hum Pathol 2013, 44:1391–9. High-grade NE tumors show higher ASH1 expression, in support of previous reports indicating that expression of ASH1 appears to be restricted to immature cells. Miki M, Ball DW, Linnoila RI. Insights into the achaete-scute homolog-1 gene (hASH1) in normal and neoplastic human lung. Lung Cancer. 2012;75:58–65. Ralston J, Chiriboga L, Nonaka D. MASH1: a useful marker in differentiating pulmonary small cell carcinoma from Merkel cell carcinoma. Mod Pathol. 2008;21:1357–62. • Rooper LM, Bishop JA, Westra WH: INSM1 is a sensitive and specific marker of neuroendocrine differentiation in head and neck tumors. Am J Surg Pathol 2018, 42:665–71. INSM1 immunohistochemistry performed on neuroendocrine and non-neuroendocrine tumors across all histological grades and anatomic subsites of the head and neck, and found 99% sensitivity among HN neuroendocrine tumors, with notable positivity in the majority of high-grade neuroendocrine malignancies; INSM1 was negative in almost all non-neuroendocrine tumors. Fujino K, Motooka Y, Hassan WA, Ali Abdalla MO, Sato Y, Kudoh S, Hasegawa K, Niimori-Kita K, Kobayashi H, Kubota I, Wakimoto J, Suzuki M, Ito T. Insulinoma-associated protein 1 is a crucial regulator of neuroendocrine differentiation in lung cancer. Am J Pathol. 2015;185:3164–77. Kriegsmann K, Longuespee R, Hundemer M, Zgorzelski C, Casadonte R, Schwamborn K, Weichert W, Schirmacher P, Harms A, Kazdal D, Leichsenring J, Stenzinger A, Warth A, Fresnais M, Kriegsmann J, Kriegsmann M. Combined immunohistochemistry after mass spectrometry imaging for superior spatial information. Proteomics Clin Appl. 2019;13: e1800035. Mukhopadhyay S, Dermawan JK, Lanigan CP, Farver CF. Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: an immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod Pathol. 2019;32:100–9. Viswanathan K, Siddiqui MT, Borczuk AC: Insulinoma-associated protein 1 is a sensitive and specific marker for lung neuroendocrine tumors in cytologic and surgical specimens. J Am Soc Cytopathol 2019. Xu F, Chen K, Lu C, Gu J, Zeng H, Xu Y, Ji Y, Ge D. Large cell neuroendocrine carcinoma shares similarity with small cell carcinoma on the basis of clinical and pathological features. Transl Oncol. 2019;12:646–55. Zhou Z, Zhu L, Niu X, Shen S, Zhao Y, Zhang J, Ye J, Han-Zhang H, Liu J, Liu C, Lu S. Comparison of genomic landscapes of large cell neuroendocrine carcinoma, small cell lung carcinoma, and large cell carcinoma. Thorac Cancer. 2019;10:839–47. Kriegsmann K, Zgorzelski C, Kazdal D, Cremer M, Muley T, Winter H, Longuespee R, Kriegsmann J, Warth A, Kriegsmann M: Insulinoma-associated protein 1 (INSM1) in thoracic tumors is less sensitive but more specific compared with synaptophysin, chromogranin A, and CD56. Appl Immunohistochem Mol Morphol 2018. Svajdler M, Mezencev R, Saskova B, Ondic O, Mukensnabl P, Michal M. Triple marker composed of p16, CD56, and TTF1 shows higher sensitivity than INSM1 for diagnosis of pulmonary small cell carcinoma: proposal for a rational immunohistochemical algorithm for diagnosis of small cell carcinoma in small biopsy and cytology specimens. Hum Pathol. 2019;85:58–64. Lewis JS Jr, Duncavage E, Klonowski PW. Oral cavity neuroendocrine carcinoma: a comparison study with cutaneous Merkel cell carcinoma and other mucosal head and neck neuroendocrine carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:209–17. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L, Masrorpour F, Shen L, Liu W, Duchemann B, Tumula P, Bhardwaj V, Welsh J, Weber S, Glisson BS, Kalhor N, Wistuba II, Girard L, Lippman SM, Mills GB, Coombes KR, Weinstein JN, Minna JD, Heymach JV. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2:798–811. Ferrarotto R, Cardnell R, Su S, Diao L, Eterovic AK, Prieto V, Morrisson WH, Wang J, Kies MS, Glisson BS, Byers LA, Bell D. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma. Head Neck. 2018;40:1676–84. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, Boysen G, Porta N, Flohr P, Gillman A, Figueiredo I, Paulding C, Seed G, Jain S, Ralph C, Protheroe A, Hussain S, Jones R, Elliott T, McGovern U, Bianchini D, Goodall J, Zafeiriou Z, Williamson CT, Ferraldeschi R, Riisnaes R, Ebbs B, Fowler G, Roda D, Yuan W, Wu YM, Cao X, Brough R, Pemberton H, A’Hern R, Swain A, Kunju LP, Eeles R, Attard G, Lord CJ, Ashworth A, Rubin MA, Knudsen KE, Feng FY, Chinnaiyan AM, Hall E, de Bono JS. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708. • Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherman BM: Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 2010, 1:812–21. Expression of PARP1 by IHC is one strategy among others that is currently being explored to select patients who are likely to benefit from PARP inhibitors.