Optical wavelength dependence of photoacoustic signal of gold nanofluid

Photoacoustics - Tập 20 - Trang 100199 - 2020
Marco Gandolfi1,2,3,4,5, Francesco Banfi5,6, Christ Glorieux3
1CNR-INO, Via Branze 45, 25123 Brescia, Italy
2Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
3Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
4Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via Musei 41, 25121, Brescia, Italy
5Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Via Musei 41, 25121 Brescia, Italy
6FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France

Tài liệu tham khảo

Bell, 1880, Art. xxxiv.-on the production and reproduction of sound by light, Am. J. Sci., 20, 305, 10.2475/ajs.s3-20.118.305 McDonald, 1980, Photoacoustic effect and the physics of waves, Am. J. Phys., 48, 41, 10.1119/1.12250 Volz, 2016, Nanophononics: state of the art and perspectives, Eur. Phys. J. B, 89, 15, 10.1140/epjb/e2015-60727-7 Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005 Xu, 2006, Photoacoustic imaging in biomedicine, Rev. Sci. Instrum., 77, 041101, 10.1063/1.2195024 Zhang, 2009, In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy, Phys. Med. Biol., 54, 1035, 10.1088/0031-9155/54/4/014 Wu, 2014, Contrast agents for photoacoustic and thermoacoustic imaging: a review, Int. J. Mol. Sci., 15, 23616, 10.3390/ijms151223616 Egerev, 1993, Radiaton of axisymmetric cavitation sound source induced by a laser pulse, 436 Alimpiev, 1995, Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold, Laser Chem., 16, 63, 10.1155/1995/43684 Karabutov, 2001, Optoacoustic supercontrast for early cancer detection, vol. 4256, 179 Egerev, 2005, Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics, Acoust. Phys., 51, 160, 10.1134/1.1884491 Yang, 2007, Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent, Nano Lett., 7, 3798, 10.1021/nl072349r Eghtedari, 2007, High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system, Nano Lett., 7, 1914, 10.1021/nl070557d Oraevsky, 2001, Enhancement of optoacoustic tissue contrast with absorbing nanoparticles, vol. 4434, 60 Mallidi, 2009, Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer, Nano Lett., 9, 2825, 10.1021/nl802929u Kelly, 2003 Crut, 2014, Optical absorption and scattering spectroscopies of single nano-objects, Chem. Soc. Rev., 43, 3921, 10.1039/c3cs60367a Li, 2015, Gold nanoparticles for photoacoustic imaging, Nanomedicine, 10, 299, 10.2217/nnm.14.169 Chen, 2012, Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles, Small, 8, 47, 10.1002/smll.201101140 Chen, 2011, Silica-coated gold nanorods as photoacoustic signal nanoamplifiers, Nano Lett., 11, 348, 10.1021/nl1042006 Kumar, 2018, Simulation studies of photoacoustic response from gold-silica core-shell nanoparticles, Plasmonics, 13, 1833, 10.1007/s11468-018-0697-3 Shi, 2017, Quantifying the plasmonic nanoparticle size effect on photoacoustic conversion efficiency, J. Phys. Chem. C, 121, 5805, 10.1021/acs.jpcc.6b12498 Yu, 2017, Tunable photoacoustic properties of gold nanoshells with near-infrared optical responses, J. Appl. Phys., 122, 134901, 10.1063/1.4985860 Ju, 2013, Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy, Biomed. Optics Express, 4, 66, 10.1364/BOE.4.000066 Wei, 2014, Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions, Appl. Phys. Lett., 104, 033701, 10.1063/1.4862461 Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028 Gujrati, 2017, Molecular imaging probes for multi-spectral optoacoustic tomography, Chem. Commun., 53, 4653, 10.1039/C6CC09421J Fonseca, 2017, Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms, J. Biomed. Optics, 22, 125007 Ntziachristos, 2010, Molecular imaging by means of multispectral optoacoustic tomography (MSOT), Chem. Rev., 110, 2783, 10.1021/cr9002566 Meng, 2019, Photoacoustic temperature imaging based on multi-wavelength excitation, Photoacoustics, 13, 33, 10.1016/j.pacs.2018.11.004 Pang, 2016, Photoacoustic signal generation in gold nanospheres in aqueous solution: signal generation enhancement and particle diameter effects, J. Phys. Chem. C, 120, 27646, 10.1021/acs.jpcc.6b09374 Ferrera, 2020, Thermometric calibration of the ultrafast relaxation dynamics in plasmonic Au nanoparticles, ACS Photonics, 10.1021/acsphotonics.9b01605 Metwally, 2015, Fluence threshold for photothermal bubble generation using plasmonic nanoparticles, J. Phys. Chem. C, 119, 28586, 10.1021/acs.jpcc.5b09903 Calasso, 2001, Photoacoustic point source, Phys. Rev. Lett., 86, 3550, 10.1103/PhysRevLett.86.3550 Prost, 2015, Photoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regime, Phys. Rev. B, 92, 115450, 10.1103/PhysRevB.92.115450 Pang, 2019, Towards biochemical sensing with gold nanoparticles through suppression of nonlinear photoacoustic signal generation, vol. 10878, 108786Q Gandolfi, 2018, Ultrafast thermo-optical dynamics of plasmonic nanoparticles, J. Phys. Chem. C, 122, 8655, 10.1021/acs.jpcc.8b01875 Stoll, 2015, Time-resolved investigations of the cooling dynamics of metal nanoparticles: impact of environment, J. Phys. Chem. C, 119, 12757, 10.1021/acs.jpcc.5b03231 Banfi, 2012, Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles, Appl. Phys. Lett., 100, 011902, 10.1063/1.3673559 Caddeo, 2017, Thermal boundary resistance from transient nanocalorimetry: a multiscale modeling approach, Phys. Rev. B, 95, 085306, 10.1103/PhysRevB.95.085306 Stoner, 1993, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 k, Phys. Rev. B, 48, 16373, 10.1103/PhysRevB.48.16373 Shi, 2016, Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes, Nano Res., 9, 3644, 10.1007/s12274-016-1234-3 Pang, 2019 Maioli, 2018, Mechanical vibrations of atomically defined metal clusters: from nano-to molecular-size oscillators, Nano Lett., 18, 6842, 10.1021/acs.nanolett.8b02717 Hale, 1973, Optical constants of water in the 200-nm to 200-μm wavelength region, Appl. Optics, 12, 555, 10.1364/AO.12.000555 Travagliati, 2015, Interface nano-confined acoustic waves in polymeric surface phononic crystals, Appl. Phys. Lett., 106, 021906, 10.1063/1.4905850 Nardi, 2015, Impulsively excited surface phononic crystals: a route toward novel sensing schemes, IEEE Sens. J., 15, 5142, 10.1109/JSEN.2015.2436881