Optical wavelength dependence of photoacoustic signal of gold nanofluid
Tài liệu tham khảo
Bell, 1880, Art. xxxiv.-on the production and reproduction of sound by light, Am. J. Sci., 20, 305, 10.2475/ajs.s3-20.118.305
McDonald, 1980, Photoacoustic effect and the physics of waves, Am. J. Phys., 48, 41, 10.1119/1.12250
Volz, 2016, Nanophononics: state of the art and perspectives, Eur. Phys. J. B, 89, 15, 10.1140/epjb/e2015-60727-7
Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005
Xu, 2006, Photoacoustic imaging in biomedicine, Rev. Sci. Instrum., 77, 041101, 10.1063/1.2195024
Zhang, 2009, In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy, Phys. Med. Biol., 54, 1035, 10.1088/0031-9155/54/4/014
Wu, 2014, Contrast agents for photoacoustic and thermoacoustic imaging: a review, Int. J. Mol. Sci., 15, 23616, 10.3390/ijms151223616
Egerev, 1993, Radiaton of axisymmetric cavitation sound source induced by a laser pulse, 436
Alimpiev, 1995, Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold, Laser Chem., 16, 63, 10.1155/1995/43684
Karabutov, 2001, Optoacoustic supercontrast for early cancer detection, vol. 4256, 179
Egerev, 2005, Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics, Acoust. Phys., 51, 160, 10.1134/1.1884491
Yang, 2007, Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent, Nano Lett., 7, 3798, 10.1021/nl072349r
Eghtedari, 2007, High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system, Nano Lett., 7, 1914, 10.1021/nl070557d
Oraevsky, 2001, Enhancement of optoacoustic tissue contrast with absorbing nanoparticles, vol. 4434, 60
Mallidi, 2009, Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer, Nano Lett., 9, 2825, 10.1021/nl802929u
Kelly, 2003
Crut, 2014, Optical absorption and scattering spectroscopies of single nano-objects, Chem. Soc. Rev., 43, 3921, 10.1039/c3cs60367a
Li, 2015, Gold nanoparticles for photoacoustic imaging, Nanomedicine, 10, 299, 10.2217/nnm.14.169
Chen, 2012, Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles, Small, 8, 47, 10.1002/smll.201101140
Chen, 2011, Silica-coated gold nanorods as photoacoustic signal nanoamplifiers, Nano Lett., 11, 348, 10.1021/nl1042006
Kumar, 2018, Simulation studies of photoacoustic response from gold-silica core-shell nanoparticles, Plasmonics, 13, 1833, 10.1007/s11468-018-0697-3
Shi, 2017, Quantifying the plasmonic nanoparticle size effect on photoacoustic conversion efficiency, J. Phys. Chem. C, 121, 5805, 10.1021/acs.jpcc.6b12498
Yu, 2017, Tunable photoacoustic properties of gold nanoshells with near-infrared optical responses, J. Appl. Phys., 122, 134901, 10.1063/1.4985860
Ju, 2013, Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy, Biomed. Optics Express, 4, 66, 10.1364/BOE.4.000066
Wei, 2014, Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions, Appl. Phys. Lett., 104, 033701, 10.1063/1.4862461
Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028
Gujrati, 2017, Molecular imaging probes for multi-spectral optoacoustic tomography, Chem. Commun., 53, 4653, 10.1039/C6CC09421J
Fonseca, 2017, Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms, J. Biomed. Optics, 22, 125007
Ntziachristos, 2010, Molecular imaging by means of multispectral optoacoustic tomography (MSOT), Chem. Rev., 110, 2783, 10.1021/cr9002566
Meng, 2019, Photoacoustic temperature imaging based on multi-wavelength excitation, Photoacoustics, 13, 33, 10.1016/j.pacs.2018.11.004
Pang, 2016, Photoacoustic signal generation in gold nanospheres in aqueous solution: signal generation enhancement and particle diameter effects, J. Phys. Chem. C, 120, 27646, 10.1021/acs.jpcc.6b09374
Ferrera, 2020, Thermometric calibration of the ultrafast relaxation dynamics in plasmonic Au nanoparticles, ACS Photonics, 10.1021/acsphotonics.9b01605
Metwally, 2015, Fluence threshold for photothermal bubble generation using plasmonic nanoparticles, J. Phys. Chem. C, 119, 28586, 10.1021/acs.jpcc.5b09903
Calasso, 2001, Photoacoustic point source, Phys. Rev. Lett., 86, 3550, 10.1103/PhysRevLett.86.3550
Prost, 2015, Photoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regime, Phys. Rev. B, 92, 115450, 10.1103/PhysRevB.92.115450
Pang, 2019, Towards biochemical sensing with gold nanoparticles through suppression of nonlinear photoacoustic signal generation, vol. 10878, 108786Q
Gandolfi, 2018, Ultrafast thermo-optical dynamics of plasmonic nanoparticles, J. Phys. Chem. C, 122, 8655, 10.1021/acs.jpcc.8b01875
Stoll, 2015, Time-resolved investigations of the cooling dynamics of metal nanoparticles: impact of environment, J. Phys. Chem. C, 119, 12757, 10.1021/acs.jpcc.5b03231
Banfi, 2012, Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles, Appl. Phys. Lett., 100, 011902, 10.1063/1.3673559
Caddeo, 2017, Thermal boundary resistance from transient nanocalorimetry: a multiscale modeling approach, Phys. Rev. B, 95, 085306, 10.1103/PhysRevB.95.085306
Stoner, 1993, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 k, Phys. Rev. B, 48, 16373, 10.1103/PhysRevB.48.16373
Shi, 2016, Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes, Nano Res., 9, 3644, 10.1007/s12274-016-1234-3
Pang, 2019
Maioli, 2018, Mechanical vibrations of atomically defined metal clusters: from nano-to molecular-size oscillators, Nano Lett., 18, 6842, 10.1021/acs.nanolett.8b02717
Hale, 1973, Optical constants of water in the 200-nm to 200-μm wavelength region, Appl. Optics, 12, 555, 10.1364/AO.12.000555
Travagliati, 2015, Interface nano-confined acoustic waves in polymeric surface phononic crystals, Appl. Phys. Lett., 106, 021906, 10.1063/1.4905850
Nardi, 2015, Impulsively excited surface phononic crystals: a route toward novel sensing schemes, IEEE Sens. J., 15, 5142, 10.1109/JSEN.2015.2436881