Optical waveguide analysis using alternative direction implicit (ADI) method in combination with successive over-relaxation (SOR) algorithm
Springer Science and Business Media LLC - Trang 1-7 - 2023
Tóm tắt
The aim of this research is to implement an implicit two step but unconditionally stable numerical scheme which is capable of efficiently solving two-dimensional Helmholtz wave equation in different rib waveguide structures in GaAs material system. In particular, we use alternative direction implicit (ADI) method in combination with successive over-relaxation (SOR) algorithm for optical modal analysis in terms of effective index (or modal index) and normalised index. It is observed that the computed normalised index and modal index exhibit great agreement with other published findings.
Tài liệu tham khảo
A.K. Thander, S. Bhattacharyya, Optical Confinement study of different semi conductor rib wave guides using higher order compact finite difference method. Optik 127, 2116–2120 (2016)
A.K. Thander, S. Bhattacharyya, Study of optical modal index for semi conductor rib wave guides using higher order compact finite difference method. Optik 131, 775–784 (2017)
D. Wang, K. Dong, J. Li, C. Grigoropoulos, J. Yao, J. Hong, Wu. Junqiao, Low-loss, geometry-invariant optical waveguides with near-zero-index materials. Nanophotonics 11(21), 4747–4753 (2022)
M.S. Stern, Semivectorial polarised H field solutions for dielectric waveguides with arbitrary index profiles. IEE Proc. J. 135, 333–338 (1988)
W. Huang, H.A. Hauss, A simple variational approach to optical Rib waveguides. J. Lightwave Technol. 9(1), 56–61 (1991)
M.S. Stern, Finite difference analysis of planar optical waveguides. Progr. Electromagn. Res. PIER 10, 123–186 (1995)
S.P. Chan, V.M.N. Passaro, G.T. Reed, Singlemode and polarisation free conditions for small silicon –on-insulator waveguides. Electron. Lett. 41(9), 528 (2005)
C.-C. Huang, C.-C. Huang, J.-Y. Yang, A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profile. IEEE J. Sel. Top. Quantum Electron. 11(2), 457–465 (2005)
W.P. Huang, C.L. Xu, W. Lui, K. Yokoyama, The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations. IEEE Photonics Technol. Lett. 8(5), 652–654 (1996)
S. Bhattacharyya, A.K. Thander, Study of H-field using higher-order compact (HOC) finite difference method (FDM) in semiconductor rib waveguide structure. J. Opt. 48, 345–356 (2019)
W.P. Huang, C.L. Xu, Simulation of three dimensional optical waveguides by a full vector beam propagation method. IEEE J. Quantum Electron 29(10), 2639–2649 (1993)
A.K. Thander, S. Bhattacharyya, Study of optical wave guide using HOC scheme. Appl Math Sci 8(79), 3931–3938 (2014)
P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, H.-C. Chang, Full –vectorial optical waveguide mode solvers using multidomain pseudospectral frequency –domain (PSFD) formulations. IEEE J. Quantum Electron. 44(1), 56–66 (2007)
S.K. Pandit, J.C. Kalita, D.C. Dalal, A transient higher order compact scheme for incompressible viscous flows on geometries beyond rectangular. J. Comput. Phys. 225, 1100–1124 (2007)
Y.P. Chiou, Y.C. Chiang, C.H. Lai, C.H. Du, H.C. Chang, Finite-difference modeling of dielectric waveguides with corners and slanted facets. J. Lightwave Technol. 27(12), 2077–2086 (2009)
S. Selleri, J. Petracek, Modal analysis of rib waveguide through finite element and mode matching methods. Opt Quantum Electron 33, 373–386 (2001)
A.K. Thander and S. Bhattacharyya, “Optimization of structure parameters of a rib wave guide using optical modal Index analysis through higher order compact FDM”.in 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), pp. 151–155 (2016) .
T.M. Benson, P.C. Kendall, Variational techniques including effective and weighted index methods. Prog. Electromag. Res. PIER 10, 1–40 (1995)
I. Molina de la Peña, M.L. Calvo, R.F. Alvarez-Estrada, Neutron optics: new algorithm based on green’s functions for simulating waveguides with dirichlet boundary conditions. Appl. Math. Model. 101, 694–715 (2022)
J.D. Hoffman, Numerical Methods for Engineers and Scientists (Marcel Dekker, Inc., New York, 1992)