Optical water types found in Brazilian waters

Limnology - Tập 22 - Trang 57-68 - 2020
Edson Filisbino Freire da Silva1, Evlyn Márcia Leão de Moraes Novo1, Felipe de Lucia Lobo2, Claudio Clemente Faria Barbosa3, Mauricio Almeida Noernberg4, Luiz Henrique da Silva Rotta5, Carolline Tressmann Cairo3, Daniel Andrade Maciel3, Rogério Flores Júnior3
1Remote Sensing Division, National Institute for Space Research, São José dos Campos, Brazil
2CDTec, Federal University of Pelotas, Pelotas, Brazil
3Image Processing Division, National Institute for Space Research, São José dos Campos, Brazil
4Center of Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
5Department of Cartography, São Paulo State University, Presidente Prudente, Brazil

Tóm tắt

Optical water types (OWTs) can represent diverse ranges of Chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) concentrations, which make them extremely useful for monitoring water quality, for example, detecting eutrophic conditions or tuning remote sensing algorithms. In this study, the objective is to assess OWTs found in Brazilian waters using in situ remote sensing reflectance (Rrs), acquired for water bodies encompassing a wide range of optical characteristics. Eight OWTs are obtained based on Rrs spectral shape and magnitude, which represent different limnological characteristics of Brazilian waters. The OWT 1 is clear waters with low TSM, Chl-a, and CDOM (median ( $$\tilde{x}$$ ): TSM of 2.64 g m−3, Chl-a of 6.04 mg m−3, and CDOM of 0.6 m−1); OWT 2 represents moderate turbid waters (TSM $$\tilde{x}$$ : 5.14); OWTs 3, 4, and 5 are characterized by waters with high Chl-a concentration ( $$\tilde{x}$$ : 33.1, 39.6, and 180.4 mg m−3, respectively); OWT 6 is characterized with the highest CDOM concentration ( $$\tilde{x}$$ : 4.07 m−1); OWTs 7 and 8 consist of waters with the highest TSM concentrations from terrestrial input ( $$\tilde{x}$$ : 19.55 and 93.25, respectively). Hence, those OWTs could support satellite monitoring by helping to tune algorithms and also providing wide spatial–temporal monitoring.

Tài liệu tham khảo

Alves TP, Mafra LL (2018) Diel variations in cell abundance and trophic transfer of diarrheic toxins during a massive dinophysis bloom in Southern Brazil. Toxins (Basel). https://doi.org/10.3390/toxins10060232 Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM Symposium on discrete algorithms, SODA. New Orleans, p 11 Augusto-Silva PB, Ogashawara I, Barbosa CCF et al (2014) Analysis of MERIS reflectance algorithms for estimating chlorophyll-a concentration in a Brazilian reservoir. Remote Sens 6:11689–11707. https://doi.org/10.3390/rs61211689 Barbosa C, Ferreira R, Araujo C, Novo E (2014) Bio-optical characterization of two Brazilian hydroelectric reservoirs as support to understand the carbon budget in hydroelectric reservoirs. Int Geosci Remote Sens Symp. https://doi.org/10.1109/IGARSS.2014.6946570 Barbosa C, Lee Z, De Carvalho LS, Novo E (2016) Effect of stratified water column on chlorophyll estimate by remote sensing algorithms in a highly eutrophic hydroelectric reservoir. Ocean Opt 2016:9 Barbosa CCF (2007) Sensoriamento Remoto da Dinâmica da Circulação da Água Do Sistema Planície de Curuai/Rio Amazonas. In: Instituto Nacional de Pesquisas Espaciais (INPE) Cairo C, Barbosa C, Lobo F et al (2020) Hybrid chlorophyll-a algorithm for assessing trophic states of a tropical Brazilian reservoir based on MSI/Sentinel-2 data. Remote Sens 12:40 Cairo CT, Barbosa CCF, de Moraes Novo EML, do Carmo Calijuri M (2016) Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 784:265–282. https://doi.org/10.1007/s10750-016-2883-7 Curtarelli VP, da Silva EFF, Lobo F de L et al (2019) Water transparency in a Brazilian reservoir. In: Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto da Silva EFF, Luz LFG da, Barbosa CCF, Noernberg MA (2019) Turbidity distribution in a subtropical estuary: the estuarine complex of Paranaguá. In: Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto, pp 2354–2357 de Toledo CE, de Araújo JC, de Almeida CL (2014) The use of remote-sensing techniques to monitor dense reservoir networks in the Brazilian semiarid region. Int J Remote Sens 35:3683–3699. https://doi.org/10.1080/01431161.2014.915593 Eleveld MA, Ruescas AB, Hommersom A et al (2017) An optical classification tool for global lake waters. Remote Sens. https://doi.org/10.3390/rs9050420 Ferreira RMP (2014) Caracterização da Ótica e do Carbono Orgânico Dissolvido no Reservatório de Três Marias/Mg. In: INPE Fraley C (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41:578–588. https://doi.org/10.1093/comjnl/41.8.578 Galvao LS, Pereira Filho W, Abdon MM et al (2003) Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data. Int J Remote Sens 24:4093–4112. https://doi.org/10.1080/0143116031000070382 Holland A, Stauber J, Wood CM et al (2018) Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia. Water Res 137:184–192. https://doi.org/10.1016/j.watres.2018.02.043 Hommersom A, Kratzer S, Laanen M et al (2012) Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD FieldSpec, and TACCS). J Appl Remote Sens 6:063615. https://doi.org/10.1117/1.jrs.6.063615 Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulseamplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251. https://doi.org/10.1111/j.1529-8817.2007.00422.x Jorge DSF, Barbosa CCF, de Carvalho LAS et al (2017) SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sens 9:1–18. https://doi.org/10.3390/rs9070644 Kirk JTO (1992) Monte Carlo modeling of the performance of a reflective tube absorption meter. Appl Opt 31:6463. https://doi.org/10.1364/ao.31.006463 Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge Uiversity Press, Cambridge Le C, Li Y, Zha Y et al (2011) Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sens Environ 115:725–737. https://doi.org/10.1016/j.rse.2010.10.014 Lobo FL, Costa MPF, Novo EMLM (2015) Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens Environ 157:170–184. https://doi.org/10.1016/j.rse.2014.04.030 Londe LR de (2008) Comportamento Espectral do Fitoplâncton de um Reservatório Brasileiro Eutrofizado—Ibitinga (SP). In: INPE Maciel D, Novo E, de Carvalho LS et al (2019) Retrieving total and inorganic suspended sediments in Amazon floodplain lakes: a multisensor approach. Remote Sens 11:1744. https://doi.org/10.3390/rs11151744 Maciel DA (2019) Avaliação de modelos empíricos e semi-analíticos para a quantificação do total de sólidos inorgânicos em lagos da planície do baixo Amazonas. In: Instituto Nacional de Pesquisas Espaciais (INPE) MacQUEEN (1967) Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symposium, pp 281–297 Matthews MW (2017) Bio-optical Modeling of Phytoplankton Chlorophyll-a. In: Mishra DR, Ogashawara I, Gitelson AA (eds) Bio-optical modeling and remote sensing of inland waters. Candice Janco, Amsterdam, pp 157–188 Miller RL, Belz M, Del Castillo C, Trzaska R (2002) Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlengh, liquid core waveguide system. Cont Shelf Res 22:1301–1310 Mobley CD (1999) Estimation of the remote-sensing reflectance from above-surface measurements. Appl Opt 38:7442–7455. https://doi.org/10.1364/AO.38.007442 Moore TS, Dowell MD, Bradt S, Ruiz Verdu A (2014) An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens Environ 143:97–111. https://doi.org/10.1016/j.rse.2013.11.021 Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Res 28A:1375–1393 Noernberg MA, Luz L, da Silva EFF, Mafra LL (2017) Remote sensing reflectance variability along an intense HAB event in Southern Brazil. In: 2017 international ocean colour science meeting (IOCS-2017), Lisbon Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.1145/2786984.2786995 Ramsay AJO, Wickham H, Graves S (2018) fda: Functional data analysis. Springer, Berlin Ramsay JO (2006) Functional data analysis. Wiley Online Library, Hoboken Rodrigues T, Ivánová I, Alcântara E et al (2015) Analysis of data quality element’s applicability for radiometric measurements in remote sensing of water: a case study in Nova Avanhandava reservoir, São Paulo, Brazil. Rev Bras Cartogr 2015:1327–1339 Roesler CS, Boss ES (2008) In situ measurement of the inherent optial properties (IOPs) and potential for harmful algal bloom (HAB) detection and coastal ecosystem observations. In: Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory, instrumentation and modelling, pp 153–206 Rotta LH, Mishra DR, Alcântara E et al (2019) Kd(PAR) and a depth based model to estimate the height of submerged aquatic vegetation in an oligotrophic reservoir: a case study at Nova Avanhandava. Remote Sens 11:1–21. https://doi.org/10.3390/rs11030317 Rotta LHS, Mishra DR, Alcântara EH, Imai NN (2016) Analyzing the status of submerged aquatic vegetation using novel optical parameters. Int J Remote Sens 37:3786–3810. https://doi.org/10.1080/01431161.2016.1204027 Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65 Shi K, Li Y, Li L et al (2013) Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Sci Total Environ 444:1–15. https://doi.org/10.1016/j.scitotenv.2012.11.058 Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amaz Limnol Oecologia Reg Syst Fluminis Amaz 1:267–277 Sioli H (1951) Alguns resultados e problemas da limnologia amazônica. Bol Técnico 1951:3–44 Sobrinho BF, Luz L, Fernandes LF, Mafra L (2018) Evidence of Noctiluca scintillans grazing during a bloom of toxic Dinophysis acuminata complex, south Brazil. In: The 18th international conference on harmful algae. Nantes Spyrakos E, O’Donnell R, Hunter PD et al (2018) Optical types of inland and coastal waters. Limnol Oceanogr 63:846–870. https://doi.org/10.1002/lno.10674 Sun D, Li Y, Wang Q et al (2010) Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China). Hydrobiologia 644:337–349. https://doi.org/10.1007/s10750-010-0198-7 Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63:411–423 Uudeberg K, Ansko I, Getter P, Ansper A (2019) Using optical water types to monitor changes in optically complex inland and coastal waters. Remote Sens. https://doi.org/10.3390/rs11192297 Vantrepotte V, Loisel H, Dessailly D, Mériaux X (2012) Optical classification of contrasted coastal waters. Remote Sens Environ 123:306–323. https://doi.org/10.1016/j.rse.2012.03.004 Wet Labs (2009) Spectral absorption and attenuation meter. In: User’s guide Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83. https://doi.org/10.2307/3001946 Wünsch UJ, Stedmon CA, Tranvik LJ, Guillemette F (2018) Unraveling the size-dependent optical properties of dissolved organic matter. Limnol Oceanogr 63:588–601. https://doi.org/10.1002/lno.10651