Optical spinning rheometry test on viscosity curves of less viscous fluids at low shear rate range

Experiments in Fluids - Tập 64 - Trang 1-13 - 2023
Daisuke Noto1, Kohei Ohie2, Taiki Yoshida3, Yuji Tasaka2
1Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, USA
2Laboratory for Flow Control, Faculty of Engineering, Hokkaido University, Sapporo, Japan
3National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Tóm tắt

We propose a method, named optical spinning rheometry (OSR), to acquire kinematic viscosity curves of Newtonian and non-Newtonian fluids in the same framework. The OSR is independent of torque measurements and utilizes velocity information measured by particle tracking velocimetry. This optical approach enables flexibility in velocity resolution, and benefits exploring the low shear rate region. In addition, the kinematic viscosity of less viscous fluids like water or dilute polymer solutions can be assessed as being free from the mechanical limitations of torque sensors. The applicable range of the OSR is discussed in detail, and its performance is verified in Newtonian fluids. Demonstrations in dilute xanthan gum solutions, concentrations of $$O(10~\textrm{ppm})$$ , show the capability of measuring their shear-thinning behaviors and the kinematic viscosity curves even in the first Newtonian regime.

Tài liệu tham khảo

Abbasian M, Shams M, Valizadeh Z, Moshfegh A, Javadzadegan A, Cheng S (2020) Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput Methods Programs Biomed 186:105185. https://doi.org/10.1016/j.cmpb.2019.105185 Alves M, Oliveira P, Pinho F (2021) Numerical methods for viscoelastic fluid flows. Annu Rev Fluid Mech 53:509–541. https://doi.org/10.1146/annurev-fluid-010719-060107 Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology, vol 3. Elsevier, London Bosart L, Snoddy A (1927) New glycerol tables\(^1\). Ind Eng Chem 19(4):506–510. https://doi.org/10.1021/ie50208a030 Clift R, Grace JR, Weber ME (2005) Bubbles, drops, and particles. Courier Corporation Den Toonder J, Hulsen M, Kuiken G, Nieuwstadt F (1997) Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J Fluid Mech 337:193–231. https://doi.org/10.1017/S0022112097004850 Dimitriou CJ, McKinley GH, Venkatesan R (2011) Rheo-PIV analysis of the yielding and flow of model waxy crude oils. Energy Fuels 25(7):3040–3052. https://doi.org/10.1021/ef2002348 Dimitropoulos CD, Sureshkumar R, Beris AN, Handler RA (2001) Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow. Phys Fluids 13(4):1016–1027. https://doi.org/10.1063/1.1345882 Escudier M, Nickson A, Poole R (2009) Turbulent flow of viscoelastic shear-thinning liquids through a rectangular duct: quantification of turbulence anisotropy. J Nonnewton Fluid Mech 160(1):2–10. https://doi.org/10.1016/j.jnnfm.2009.01.002 Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Complex fluids in biological systems, Springer, pp 207–241 Huggins ML (1942) Theory of solutions of high polymers1. J Am Chem Soc 64(7):1712–1719 Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753. https://doi.org/10.1016/j.progpolymsci.2011.02.002 Macosko CW (1994) Rheology principles. Measurements and Applications Mader H, Llewellin E, Mueller S (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geoth Res 257:135–158. https://doi.org/10.1016/j.jvolgeores.2013.02.014 Medina-Bañuelos EF, Marín-Santibáñez BM, Pérez-González J, Kalyon DM (2019) Rheo-PIV analysis of the vane in cup flow of a viscoplastic microgel. J Rheol 63(6):905–915. https://doi.org/10.1122/1.5118900 Min T, Yoo JY, Choi H, Joseph DD (2003) Drag reduction by polymer additives in a turbulent channel flow. J Fluid Mech 486:213–238. https://doi.org/10.1017/S0022112003004610 Nishinari K, Turcanu M, Nakauma M, Fang Y (2019) Role of fluid cohesiveness in safe swallowing. NPJ Sci Food 3(1):1–13. https://doi.org/10.1038/s41538-019-0038-8 Noto D, Tasaka Y, Murai Y (2021a) In situ color-to-depth calibration: toward practical three-dimensional color particle tracking velocimetry. Exp Fluids 62(6):1–13. https://doi.org/10.1007/s00348-021-03220-9 Noto D, Terada T, Yanagisawa T, Miyagoshi T, Tasaka Y (2021b) Developing horizontal convection against stable temperature stratification in a rectangular container. Phys Rev Fluids 6(8):083501. https://doi.org/10.1103/PhysRevFluids.6.083501 Ohie K, Yoshida T, Tasaka Y, Murai Y (2022) Effective rheology mapping for characterizing polymer solutions utilizing ultrasonic spinning rheometry. Exp Fluids 63(2):1–12. https://doi.org/10.1007/s00348-022-03382-0 Saric WS (1994) Görtler vortices. Annu Rev Fluid Mech 26(1):379–409. https://doi.org/10.1146/annurev.fl.26.010194.002115 Segur JB, Oberstar HE (1951) Viscosity of glycerol and its aqueous solutions. Ind Eng Chem 43(9):2117–2120. https://doi.org/10.1021/ie50501a040 Serrano-Aguilera J, Parras L, del Pino C, Rubio-Hernandez F (2016) Rheo-PIV of Aerosil® R816/polypropylene glycol suspensions. J Nonnewton Fluid Mech 232:22–32. https://doi.org/10.1016/j.jnnfm.2016.03.015 Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, Association for Computing Machinery, New York, NY, USA, pp 517–524, 10.1145/800186.810616 Song Y, Rau MJ (2020) Viscous fluid flow inside an oscillating cylinder and its extension to Stokes’ second problem. Phys Fluids 32(4):043601. https://doi.org/10.1063/1.5144415 Sureshkumar R, Beris AN, Handler RA (1997) Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys Fluids 9(3):743–755. https://doi.org/10.1063/1.869229 Tasaka Y, Kimura T, Murai Y (2015) Estimating the effective viscosity of bubble suspensions in oscillatory shear flows by means of ultrasonic spinning rheometry. Exp Fluids 56(1):1–13. https://doi.org/10.1007/s00348-014-1867-5 Tasaka Y, Yoshida T, Rapberger R, Murai Y (2018) Linear viscoelastic analysis using frequency-domain algorithm on oscillating circular shear flows for bubble suspensions. Rheol Acta 57(3):229–240. https://doi.org/10.1007/s00397-018-1074-z Tasaka Y, Yoshida T, Murai Y (2021) Nonintrusive in-line rheometry using ultrasonic velocity profiling. Ind Eng Chem Res 60(30):11535–11543. https://doi.org/10.1021/acs.iecr.1c01795 Tropea C, Yarin AL, Foss JF et al (2007) Springer handbook of experimental fluid mechanics, vol 1. Springer, Cham Wagner CE, Barbati AC, Engmann J, Burbidge AS, McKinley GH (2017) Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocoll 69:242–254 Whitcomb PJ, Macosko C (1978) Rheology of xanthan gum. J Rheol 22(5):493–505. https://doi.org/10.1122/1.549485 Yoshida T, Tasaka Y, Murai Y (2017) Rheological evaluation of complex fluids using ultrasonic spinning rheometry in an open container. J Rheol 61(3):537–549. https://doi.org/10.1122/1.4980852 Yoshida T, Tasaka Y, Tanaka S, Park H, Murai Y (2018) Rheological properties of montmorillonite dispersions in dilute NaCl concentration investigated by ultrasonic spinning rheometry. Appl Clay Sci 161:513–523. https://doi.org/10.1016/j.clay.2018.05.017 Yoshida T, Tasaka Y, Murai Y (2019) Efficacy assessments in ultrasonic spinning rheometry: linear viscoelastic analysis on non-Newtonian fluids. J Rheol 63(4):503–517. https://doi.org/10.1122/1.5086986 Yoshida T, Ohie K, Tasaka Y (2022) In situ measurement of instantaneous viscosity curve of fluids in a reserve tank. Ind Eng Chem Res 61(31):11579–11588. https://doi.org/10.1021/acs.iecr.2c01792