Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Feng, 2002, The first integral method to study the Burgers-KdV equation, J. Phys. A, 35, 343, 10.1088/0305-4470/35/2/312
Lu, 2012, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395, 684, 10.1016/j.jmaa.2012.05.066
Bekir, 2012, Analytic treatment of nonlinear evolution equations using first integral method, Pramana – J. Phys., 79, 3, 10.1007/s12043-012-0282-9
Tascan, 2009, Travelling wave solutions of nonlinear evolutions by using the first integral method, Commun. Non-Sci. Numer. Simul., 14, 1810, 10.1016/j.cnsns.2008.07.009
Aslan, 2011, Exact and explicit solutions to nonlinear evolution equations using the division theorem, Appl. Math. Comput., 217, 8134
Aslan, 2012, The first integral method for constructing exact and explicit solutions to nonlinear evolution equations, Math. Methods Appl. Sci., 35, 716, 10.1002/mma.1599
Aslan, 2011, Travelling wave solutions to nonlinear physical models by means of the first integral method, Pramana – J. Phys., 76, 533, 10.1007/s12043-011-0062-y
Aslan, 2013, Some exact and eplicit solutions for nonlinear Schrödinger equations, Acta Phys. Pol. A, 123, 16, 10.12693/APhysPolA.123.16
Jafari, 2012, The first integral method and traveling wave solutions to Davey–Stewartson equation, Nonlin. Anal.: Model. Control, 17, 182, 10.15388/NA.17.2.14067
Taghizadeh, 2011, Exact solutions of the nonlinear Schrödinger equation by the first integral method, J. Math. Anal. Appl., 374, 549, 10.1016/j.jmaa.2010.08.050
Ding, 1996
Triki, 2012, Bright and dark solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients, Opt. Laser Technol., 44, 2223, 10.1016/j.optlastec.2012.01.037
Pashaev, 2002, Resonance solitons as black holes in Madelung fluid, Mod. Phys. Lett. A, 17, 1601, 10.1142/S0217732302007995
Rogers, 2009, A resonant Davey–Stewartson capillary model system, Int. J. Nonlinear Sci. Numer. Simul., 10, 397, 10.1515/IJNSNS.2009.10.3.397
Tang, 2009, Propagating wave patterns for the ‘resonant’ Davey–Stewartson system, Chaos Solitons Fract., 42, 2707, 10.1016/j.chaos.2009.03.146
Biswas, 2011, Chiral solitons with Bohm potential by He's variational principle, Phys. At. Nuclei, 74, 781, 10.1134/S1063778811050048
Biswas, 2011, Dynamics and conservation laws of the generalized chiral solitons, Open Nucl. Part. Phys. J., 4, 21, 10.2174/1874415X01104010021
Nishino, 1998, Chiral nonlinear Schrödinger equation, Chaos, Solitons Fract., 9, 1063, 10.1016/S0960-0779(97)00184-7
Biswas, 2012, Optical soliton perturbation in a non-Kerr law media: traveling wave solution, Opt. Laser Technol., 44, 1775, 10.1016/j.optlastec.2011.07.001
Gagnon, 1989, Exact traveling wave solutions for optical models based on the nonlinear cubic-quintic Schrödinger equation, J. Opt. Soc. Am. A, 6, 1477, 10.1364/JOSAA.6.001477
Biswas, 2009, Optical solitons with time-dependent dispersion, nonlinearity and attenuation in a Kerr-law media, Int. J. Theor. Phys., 48, 256, 10.1007/s10773-008-9800-4
Biswas, 2009, 1-Soliton solution of the B(m, n) equation with generalized evolution, Commun. Nonlinear Sci. Numer. Simul., 14, 3226, 10.1016/j.cnsns.2008.12.025
Biswas, 2009, Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients, Nonlinear Dyn., 58, 345, 10.1007/s11071-009-9480-5
Biswas, 2008, 1-Soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A, 372, 4601, 10.1016/j.physleta.2008.05.002
Biswas, 2009, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., 22, 208, 10.1016/j.aml.2008.03.011
Ma, 1993, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A, 180, 221, 10.1016/0375-9601(93)90699-Z
Malfliet, 1992, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 650, 10.1119/1.17120
Ma, 2010, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, 065003, 10.1088/0031-8949/82/06/065003
Kudryashov, 2005, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99, 10.1016/j.physleta.2005.05.025
Kudryashov, 2005, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton Fract., 24, 1217, 10.1016/j.chaos.2004.09.109
Vitanov, 2010, Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Commun. Nonlinear Sci. Numer. Simul., 15, 2836, 10.1016/j.cnsns.2009.11.029
Vitanov, 2010, Modified method of simplest equation and its application to nonlinear PDEs, Appl. Math. Comput., 216, 2587
Hirota, 1971, Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys. Rev. Lett., 27, 1192, 10.1103/PhysRevLett.27.1192
Hirota, 2004
Ma, 2009, A transformed rational function method and exact solutions to the (3 + 1)-dimensional Jimbo-Miwa equation, Chaos Solitons Fract., 42, 1356, 10.1016/j.chaos.2009.03.043
Bang, 1995, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Anal., 57, 3, 10.1080/00036819508840335
Triki, 2012, 1-Soliton solution of the generalized dispersive nonlinear Schrödinger's equation with time-dependent coefficients, Adv. Sci. Lett., 16, 309, 10.1166/asl.2012.3255
Biswas, 2012, Soliton solutions of the perturbed resonant nonlinrear Schrödinger's equation with full nonlinearity by semi-inverse variational principle, Quantum Phys. Lett., 1, 79
Kohl, 2008, Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 40, 647, 10.1016/j.optlastec.2007.10.002
Biswas, 2012, Bright and dark solitons in birefringent fibers with Hamiltonan perturbations and Kerr law nonlinearity, J. Optoelectron. Adv. Mater., 14, 571