Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method

Optik - Tập 125 Số 13 - Trang 3107-3116 - 2014
Mostafa Eslami1, Mohammad Mirzazadeh2, Behrouz Fathi Vajargah3, Anjan Biswas4,5
1Department of Mathematics, Faculty of Sciences, University of Mazandaran, Babolsar, Iran
2Department of Mathematics, Faculty of Sciences, University of Guilan, Rasht, Iran#TAB#
3Department of Statistics, Faculty of Sciences, University of Guilan, Rasht, Iran
4Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA
5Faculty of Science, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Feng, 2002, The first integral method to study the Burgers-KdV equation, J. Phys. A, 35, 343, 10.1088/0305-4470/35/2/312

Lu, 2012, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395, 684, 10.1016/j.jmaa.2012.05.066

Bekir, 2012, Analytic treatment of nonlinear evolution equations using first integral method, Pramana – J. Phys., 79, 3, 10.1007/s12043-012-0282-9

Tascan, 2009, Travelling wave solutions of nonlinear evolutions by using the first integral method, Commun. Non-Sci. Numer. Simul., 14, 1810, 10.1016/j.cnsns.2008.07.009

Aslan, 2011, Exact and explicit solutions to nonlinear evolution equations using the division theorem, Appl. Math. Comput., 217, 8134

Aslan, 2012, The first integral method for constructing exact and explicit solutions to nonlinear evolution equations, Math. Methods Appl. Sci., 35, 716, 10.1002/mma.1599

Aslan, 2011, Travelling wave solutions to nonlinear physical models by means of the first integral method, Pramana – J. Phys., 76, 533, 10.1007/s12043-011-0062-y

Aslan, 2013, Some exact and eplicit solutions for nonlinear Schrödinger equations, Acta Phys. Pol. A, 123, 16, 10.12693/APhysPolA.123.16

Jafari, 2012, The first integral method and traveling wave solutions to Davey–Stewartson equation, Nonlin. Anal.: Model. Control, 17, 182, 10.15388/NA.17.2.14067

Taghizadeh, 2011, Exact solutions of the nonlinear Schrödinger equation by the first integral method, J. Math. Anal. Appl., 374, 549, 10.1016/j.jmaa.2010.08.050

Ding, 1996

Triki, 2012, Bright and dark solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients, Opt. Laser Technol., 44, 2223, 10.1016/j.optlastec.2012.01.037

Pashaev, 2002, Resonance solitons as black holes in Madelung fluid, Mod. Phys. Lett. A, 17, 1601, 10.1142/S0217732302007995

Rogers, 2009, A resonant Davey–Stewartson capillary model system, Int. J. Nonlinear Sci. Numer. Simul., 10, 397, 10.1515/IJNSNS.2009.10.3.397

Tang, 2009, Propagating wave patterns for the ‘resonant’ Davey–Stewartson system, Chaos Solitons Fract., 42, 2707, 10.1016/j.chaos.2009.03.146

Biswas, 2011, Chiral solitons with Bohm potential by He's variational principle, Phys. At. Nuclei, 74, 781, 10.1134/S1063778811050048

Biswas, 2011, Dynamics and conservation laws of the generalized chiral solitons, Open Nucl. Part. Phys. J., 4, 21, 10.2174/1874415X01104010021

Nishino, 1998, Chiral nonlinear Schrödinger equation, Chaos, Solitons Fract., 9, 1063, 10.1016/S0960-0779(97)00184-7

Biswas, 2012, Optical soliton perturbation in a non-Kerr law media: traveling wave solution, Opt. Laser Technol., 44, 1775, 10.1016/j.optlastec.2011.07.001

Gagnon, 1989, Exact traveling wave solutions for optical models based on the nonlinear cubic-quintic Schrödinger equation, J. Opt. Soc. Am. A, 6, 1477, 10.1364/JOSAA.6.001477

Biswas, 2009, Optical solitons with time-dependent dispersion, nonlinearity and attenuation in a Kerr-law media, Int. J. Theor. Phys., 48, 256, 10.1007/s10773-008-9800-4

Biswas, 2009, 1-Soliton solution of the B(m, n) equation with generalized evolution, Commun. Nonlinear Sci. Numer. Simul., 14, 3226, 10.1016/j.cnsns.2008.12.025

Biswas, 2009, Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients, Nonlinear Dyn., 58, 345, 10.1007/s11071-009-9480-5

Biswas, 2008, 1-Soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A, 372, 4601, 10.1016/j.physleta.2008.05.002

Biswas, 2009, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., 22, 208, 10.1016/j.aml.2008.03.011

Ma, 1993, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A, 180, 221, 10.1016/0375-9601(93)90699-Z

Malfliet, 1992, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 650, 10.1119/1.17120

Ma, 2010, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, 065003, 10.1088/0031-8949/82/06/065003

Kudryashov, 2005, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99, 10.1016/j.physleta.2005.05.025

Kudryashov, 2005, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton Fract., 24, 1217, 10.1016/j.chaos.2004.09.109

Vitanov, 2010, Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Commun. Nonlinear Sci. Numer. Simul., 15, 2836, 10.1016/j.cnsns.2009.11.029

Vitanov, 2010, Modified method of simplest equation and its application to nonlinear PDEs, Appl. Math. Comput., 216, 2587

Hirota, 1971, Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys. Rev. Lett., 27, 1192, 10.1103/PhysRevLett.27.1192

Hirota, 2004

Ma, 2009, A transformed rational function method and exact solutions to the (3 + 1)-dimensional Jimbo-Miwa equation, Chaos Solitons Fract., 42, 1356, 10.1016/j.chaos.2009.03.043

Bang, 1995, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Anal., 57, 3, 10.1080/00036819508840335

Triki, 2012, 1-Soliton solution of the generalized dispersive nonlinear Schrödinger's equation with time-dependent coefficients, Adv. Sci. Lett., 16, 309, 10.1166/asl.2012.3255

Biswas, 2012, Soliton solutions of the perturbed resonant nonlinrear Schrödinger's equation with full nonlinearity by semi-inverse variational principle, Quantum Phys. Lett., 1, 79

Kohl, 2008, Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 40, 647, 10.1016/j.optlastec.2007.10.002

Biswas, 2012, Bright and dark solitons in birefringent fibers with Hamiltonan perturbations and Kerr law nonlinearity, J. Optoelectron. Adv. Mater., 14, 571