Optical solitons and conservation law of Kundu–Eckhaus equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnous, 2016, Application of the generalized Kudryashov method to the Eckhaus equation, Nonlinear Anal.: Model. Control, 21, 577, 10.15388/NA.2016.5.1
Baskonus, 2015, On the complex structures of Kundu–Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 10.1080/17455030.2015.1080392
Bayndr, 2016, Rogue wave spectra of the Kundu–Eckhaus equation, Phys. Rev. E, 93, 062215, 10.1103/PhysRevE.93.062215
Ekici, 2016, Dark and singular optical solitons with Kundu–Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme, Optik, 127, 10490, 10.1016/j.ijleo.2016.08.074
El-Borai, 2017, Topological and singular solitons to Kundu–Eckhaus equation with extended Kudryashov's method, Optik, 128, 57, 10.1016/j.ijleo.2016.10.011
Hosseini, 2016, Modified Kudryashov method for solving the conformable time-fractional Klein–Gordon equations with quadratic and cubic nonlinearities, Optik, 130, 737, 10.1016/j.ijleo.2016.10.136
A. Korkmaz. Exact solutions to some conformable time fractional equations in Benjamin–Bona–Mahony family, arXiv:1611.07086v2 [nlin.SI] (3.12.16).
Kumar, 2016, Optical solitons in nano-fibers with Kundu–Eckhaus equation by Lie symmetry analysis, Optoelectron. Adv. Mater. – Rapid Commun., 10, 21
Levi, 2009, The Kundu–Eckhaus equation and its discretizations, J. Phys. A, 42, 465203, 10.1088/1751-8113/42/46/465203
Manafian, 2016, Abundant soliton solutions for the Kundu–Eckhaus equation via tan(ϕ(ξ))-expansion method’, Optik, 127, 5543, 10.1016/j.ijleo.2016.03.041
Taghizadeh, 2014, Exact travelling wave solutions for some complex nonlinear partial differential equations, Comput. Methods Diff. Eq., 2, 11
Vega-Guzman, 2015, Dark and singular solitons of Kundu–Eckhaus equation for optical fibers, Optoelectron. Adv. Mater. – Rapid Commun., 9, 1353
Wang, 2015, Bright and dark soliton solutions and Bäcklund transformation for the Eckhaus-Kundu equation with the cubic–quintic nonlinearity, Appl. Math. Comput., 251, 233
X.F. Yang, Z.C. Deng, Y. Wei. A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Eq. (2015). Article #: 117.