Optical signal processing based on silicon photonics waveguide Bragg gratings: review

Saket Kaushal1, Rui Cheng2, Minglei Ma2, Ajay Mistry2, Maurizio Burla3,1, Lukas Chrostowski2, José Azaña1
1Institut National de la Recherche Scientifique – Centre Energie, Matériaux et Télécommunications (INRS-EMT), Varennes, Canada
2Department of Electrical and Computer Engineering, University of British Columbia, UBC, Vancouver, Canada
3Institute of Electromagnetic Fields, ETH Zurich, Zurich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I. Wireless sub-THz communication system with high data rate. Nature Photonics, 2013, 7(12): 977–981

Eyre J, Bier J. The evolution of DSP processors. IEEE Signal Processing Magazine, 2000, 17(2): 43–51

Kuo S M, Lee B H, Tian W. Real-time Digital Signal Processing: Fundamentals, Implementations and Applications. New York: John Wiley & Sons, 2013

Seeds A J, Shams H, Fice M J, Renaud C C. Terahertz photonics for wireless communications. Journal of Lightwave Technology, 2015, 33(3): 579–587

Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H. Terahertz wireless communications based on photonics technologies. Optics Express, 2013, 21(20): 23736–23747

Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887

Iezekiel S. Microwave Photonics: Devices and Applications. New York: John Wiley & Sons, 2009

Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330

Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538

Roeloffzen C G, Zhuang L, Taddei C, Leinse A, Heideman R G, van Dijk P W, Oldenbeuving R M, Marpaung D A, Burla M, Boller K J. Silicon nitride microwave photonic circuits. Optics Express, 2013, 21(19): 22937–22961

Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52: 1–12

Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon Microring Resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73

Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems. Cambridge: Cambridge University Press, 2015

Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263–1276

Bazargani H P, Burla M, Chrostowski L, Azaña J. Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer. Optics Letters, 2016, 41(21): 5039–5042

Burla M, Wang X, Li M, Chrostowski L, Azaña J. Wideband dynamic microwave frequency identification system using a lowpower ultracompact silicon photonic chip. Nature Communications, 2016, 7: 13004

Burla M, Li M, Cortés L R, Wang X, Fernández-Ruiz M R, Chrostowski L, Azaña J. Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. Optics Letters, 2014, 39(21): 6241–6244

Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Azaña J. Onchip programmable ultra-wideband microwave photonic phase shifter and true time delay unit. Optics Letters, 2014, 39(21): 6181–6184

Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Azaña J. Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21(21): 25120–25147

Dolgaleva K, Malacarne A, Tannouri P, Fernandes L A, Grenier J R, Aitchison J S, Azaña J, Morandotti R, Herman P R, Marques P V. Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide. Optics Letters, 2011, 36(22): 4416–4418

Rutkowska K A, Duchesne D, Strain M J, Morandotti R, Sorel M, Azaña J. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings. Optics Express, 2011, 19(20): 19514–19522

Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44

Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68(12): 4309–4341

Vivien L, Osmond J, Fédéli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Optics Express, 2009, 17(8): 6252–6257

Skaar J. Synthesis and Characterization of Fiber Bragg Gratings. Dissertation for the Doctoral Degree. Trondheim, Norway: Norwegian University of Science and Technology, 2000

Sima C, Gates J C, Holmes C, Mennea P L, Zervas M N, Smith P G. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Optics Letters, 2013, 38(17): 3448–3451

Simard A D, Strain M J, Meriggi L, Sorel M, LaRochelle S. Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses. Optics Letters, 2015, 40(5): 736–739

Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225

Simard A D, Belhadj N, Painchaud Y, LaRochelle S. Apodized silicon-on-insulator Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(12): 1033–1035

Wiesmann D, David C, Germann R, Emi D, Bona G. Apodized surface-corrugated gratings with varying duty cycles. IEEE Photonics Technology Letters, 2000, 12(6): 639–641

Tan D T, Ikeda K, Fainman Y. Cladding-modulated Bragg gratings in silicon waveguides. Optics Letters, 2009, 34(9): 1357–1359

Hung Y J, Lin K H, Wu C J, Wang C Y, Chen Y J. Narrowband reflection from weakly coupled cladding-modulated Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 218–224

Wang X, Wang Y, Flueckiger J, Bojko R, Liu A, Reid A, Pond J, Jaeger N A, Chrostowski L. Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings. Optics Letters, 2014, 39(19): 5519–5522

Cheng R, Chrostowski L. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings. Optics Letters, 2018, 43(5): 1031–1034

Agrawal G P, Radic S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technology Letters, 1994, 6(8): 995–997

Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 2002, 41(19): 3978–3987

Stoll H, Yariv A. Coupled-mode analysis of periodic dielectric waveguides. Optics Communications, 1973, 8(1): 5–8

Yariv A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 1973, 9(9): 919–933

Streifer W, Scifres D, Burnham R. Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers. IEEE Journal of Quantum Electronics, 1975, 11(11): 867–873

Zhang Y, Holzwarth N, Williams R. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(20): 12738–12750

Lumerical FDTD, 2018

Pendry J. Photonic band structures. Journal of Modern Optics, 1994, 41(2): 209–229

Li Z Y, Lin L L. Photonic band structures solved by a plane-wavebased transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(4 Pt 2): 046607

Applied Nanotools Inc., 2018

Simard A D, Beaudin G, Aimez V, Painchaud Y, Larochelle S. Characterization and reduction of spectral distortions in silicon-oninsulator integrated Bragg gratings. Optics Express, 2013, 21(20): 23145–23159

Ayotte N, Simard A D, LaRochelle S. Long integrated Bragg gratings for SOI wafer metrology. IEEE Photonics Technology Letters, 2015, 27(7): 755–758

Simard A D, Painchaud Y, LaRochelle S. Integrated Bragg gratings in spiral waveguides. Optics Express, 2013, 21(7): 8953–8963

Wang X, Yun H, Chrostowski L. Integrated Bragg gratings in spiral waveguides. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO). San Jose, California: OSA, 2013, CTh4F.8

Ma M, Chen Z, Yun H, Wang Y, Wang X, Jaeger N A F, Chrostowski L. Apodized spiral Bragg grating waveguides in silicon-on-insulator. IEEE Photonics Technology Letters, 2018, 30(1): 111–114

Simard A D, Ayotte N, Painchaud Y, Bedard S, LaRochelle S. Impact of sidewall roughness on integrated Bragg gratings. Journal of Lightwave Technology, 2011, 29(24): 3693–3704

Azaña J, Muriel M A. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE Journal of Quantum Electronics, 2000, 36(5): 517–526

Azaña J, Berger N K, Levit B, Fischer B. Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse. Applied Optics, 2004, 43(2): 483–490

Yariv A, Yeh P. Photonics: Optical Electronics in Modern Communications. Oxford: Oxford University Press, 2006

Tong Y, Chan L, Tsang H. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electronics Letters, 1997, 33(11): 983–985

Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings. Optics Letters, 1999, 24(1): 1–3

Coppinger F, Bhushan A, Jalali B. Photonic time stretch and its application to analog-to-digital conversion. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1309–1314

Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583

Solli D, Chou J, Jalali B. Amplified wavelength–time transformation for real-time spectroscopy. Nature Photonics, 2008, 2(1): 48–51

Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Optics Letters, 1987, 12(10): 847–849

Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474

Weiner A. Ultrafast Optics, volume 72. New York: John Wiley & Sons, 2011

Rivas L M, Strain M J, Duchesne D, Carballar A, Sorel M, Morandotti R, Azaña J. Picosecond linear optical pulse shapers based on integrated waveguide Bragg gratings. Optics Letters, 2008, 33(21): 2425–2427

Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Azaña J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421

Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J B, Callender C, Azaña J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach–Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389

Bazargani H P, Burla M, Azaña J. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping. Optics Letters, 2015, 40(23): 5423–5426

Bazargani H P, Azaña J. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. Optics Express, 2015, 23(18): 23450–23461

Bazargani H, Burla M, Chen Z, Zhang F, Chrostowski L, Azaña J. Long-duration optical pulse shaping and complex coding on SOI. IEEE Photonics Journal, 2016, 8(4): 1–7

Deng N, Liu Z, Wang X, Fu T, Xie W, Dong Y. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10–17 instability. Optics Express, 2018, 26(1): 339–346

Liu Y, Marpaung D, Choudhary A, Eggleton B J. Highly selective and reconfigurable Si3N4 RF photonic notch filter with negligible RF losses. In: Proceedings of Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2017, paper SM1O.7

Fandiño J S, Muñoz P, Doménech D, Capmany J. A monolithic integrated photonic microwave filter. Nature Photonics, 2017, 11(2): 124–129

Zhuang L, Roeloffzen C G, Hoekman M, Boller K J, Lowery A J. Programmable photonic signal processor chip for radio frequency applications. Optica, 2015, 2(10): 854–859

Capmany J, Gasulla I, Pérez D. The programmable processor. Nature Photonics, 2016, 10: 6–8