Optical rotation conveyor belt based on a polarization-maintaining hollow-core photonic crystal fiber

Springer Science and Business Media LLC - Tập 27 - Trang 561-567 - 2020
Heming Su1, Nan Li1, Chenge Wang1, Qi Zhu1, Wenqiang Li1, Zhenhai Fu2, Huizhu Hu1,2
1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
2Quantum Sensing Center, Zhejiang Lab, Hangzhou, China

Tóm tắt

Hollow-core photonic crystal fibers (HCPCFs), a form of optical conveyer belts, have been used to guide particles for many years. However, only the translational motions of a guided particle can be manipulated. In contrast to traditional types, we demonstrate a new form of optical conveyor belts based on a polarization-maintaining hollow-core photonic crystal fiber (PMHCPCF). Because of the constant polarization state in the PMHCPCF, both the translational and rotational motions of a guided particle can be manipulated simultaneously. For the convenience of theoretical simulations and the effortless control of the polarization state in the PMHCPCF, an x-axis linearly polarized beam and an elliptically polarized beam are coupled into the PMHCPCF to form an incoherent dual-beam trap. For a specific guided particle, the orientation of the particle can be manipulated by the polarization state of the x-axis linearly polarized beam and its rotation rate can be manipulated by the polarization state of the elliptically polarized beam. Moreover, we can obtain any orientation and rotation rate at each trapping position by changing the polarization direction and polarization state. This results in a variety of application prospects in the study of chiral molecules, especially in the fields of biology, medicine, chemistry, and polymers.

Tài liệu tham khảo

Schrader, D., Kuhr, S., Alt, W., Müller, M., Gomer, V., Meschede, D.: An optical conveyor belt for single neutral atoms. Appl. Phys. B 73, 819–824 (2001) Christensen, C.A., Will, S., Saba, M., Jo, G.-B., Shin, Y., Ketterle, W., Pritchard, D.: Trapping of ultracold atoms in a hollow-core photonic crystal fiber. Phys. Rev. A 78, 033429 (2008) Vorrath, S., Möller, S.A., Windpassinger, P., Bongs, K., Sengstock, K.: Efficient guiding of cold atoms through a photonic band gap fiber. New J. Phys. 12, 123015 (2010) Okaba, S., Takano, T., Benabid, F., Bradley, T., Vincetti, L., Maizelis, Z., Yampol’skii, V., Nori, F., Katori, H.: Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 5, 4096 (2014) Langbecker, M., Wirtz, R., Knoch, F., Noaman, M., Speck, T., Windpassinger, P.: Highly controlled optical transport of cold atoms into a hollow-core fiber. New J. Phys. 20, 083038 (2018) Ponce, S., Munoz, M., Cubillas, A.M., Euser, T.G., Zhang, G.-R., Russell, P.S.J., Wasserscheid, P., Etzold, B.J.M.: Stable immobilization of size-controlled bimetallic nanoparticles in photonic crystal fiber microreactor. Chem. Ing. Tech. 90, 653–658 (2018) Gherardi, D.M., Carruthers, A.E., Čižmár, T., Wright, E.M., Dholakia, K.: A dual beam photonic crystal fiber trap for microscopic particles. Appl. Phys. Lett. 93, 041110 (2008) Garbos, M.K., Euser, T.G., Schmidt, O.A., Unterkofler, S., Russell, P.S.J.: Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber. Opt. Lett. 36, 2020–2022 (2011) Euser, T.G., Garbos, M.K., Chen, J.S.Y., Russell, P.S.J.: Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber. Opt. Lett. 34, 3674–3676 (2009) Bykov, D.S., Schmidt, O.A., Euser, T.G., Russell, P.S.J.: Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics. 9, 461–465 (2015) Schmidt, O.A., Garbos, M.K., Euser, T.G., Russell, P.S.J.: Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber. Opt. Lett. 37, 91–93 (2012) Friedrich, L., Rohrbach, A.: Surface imaging beyond the diffraction limit with optically trapped spheres. Nat. Nanotechnol. 10, 1064–1069 (2015) Ranjit, G., Cunningham, M., Casey, K., Geraci, A.A.: Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016) Becker, N.B., Altmann, S.M., Scholz, T., Hörber, J.K.H., Stelzer, E.H.K., Rohrbach, A.: Three-dimensional bead position histograms reveal single-molecule nanomechanics. Phys. Rev. E 71, 021907 (2005) Hoang, T.M., Ma, Y., Ahn, J., Bang, J., Robicheaux, F., Yin, Z.Q., Li, T.: Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016) Kuhn, S., Kosloff, A., Stickler, B.A., Patolsky, F., Hornberger, K., Arndt, M., Millen, J.: Full rotational control of levitated silicon nanorods. Optica 4, 356–360 (2017) Grass, D., Fesel, J., Hofer, S.G., Kiesel, N., Aspelmeyer, M.: Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers. Appl. Phys. Lett. 108, 221103 (2016) Friese, M.E.J., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop, H.: Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998a) Friese, M.E.J., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop, H.: Optical torque controlled by elliptical polarization. Opt. Lett. 23, 1–3 (1998b) Friese, M.E.J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P., Hanstorp, D.: ptically driven micromachine elements. Appl. Phys. Lett. 78, 3 (2001) Reimann, R., Doderer, M., Hebestreit, E., Diehl, R., Frimmer, M., Windey, D., Tebbenjohanns, F., Novotny, L.: GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. 121, 033602 (2018) Kuhn, S., Stickler, B.A., Kosloff, A., Patolsky, F., Hornberger, K., Arndt, M., Millen, J.: Optically driven ultra-stable nanomechanical rotor. Nat Commun 8, 1–5 (2017) Ahn, J., Xu, Z., Bang, J., Ju, P., Gao, X., Li, T.: Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol 15, 89–93 (2020) Čižmár, T., Garcés-Chávez, V., Dholakia, K., Zemánek, P.: Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett. 86, 174101 (2005) Benabid, F., Knight, J.C., Russell, P.: St. J.: Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10, 1195–1203 (2002) Schmidt, O.A., Euser, T.G., Russell, P.S.: Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber. Opt. Express 21, 29383–29391 (2013) Chen, K., Wang, C., Hu, H., Shu, X., Liu, C.: A single-mode polarization maintaining hollow core photonic bandgap fiber. IEEE Photon. Technol. Lett. 28, 2617–2620 (2016) Simpson, S.H., Benito, D.C., Hanna, S.: Polarization-induced torque in optical traps. Phys. Rev. A 76, 043408 (2007) Bohren, C.F., Huffman, D.R.: Absorption and scattering of light by small particles. Wiley, New York (1983) Liu, X., Lei, T.: Gyro mechanics foundation. Tsinghua University Press, Beijing (1987) Trojek, J., Chvátal, L., Zemánek, P.: Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. J. Opt. Soc. Am. A 29, 1224–1236 (2012) Shelton, W.A., Bonin, K.D., Walker, T.G.: Nonlinear motion of optically torqued nanorods. Phys. Rev. E 71, 036204 (2005) Ahn, J., Xu, Z., Bang, J., Deng, Y.H., Hoang, T.M., Han, Q., Ma, R.M., Li, T.: Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121, 033603 (2018) Dushman, S.: Scientific foundations of vacuum technique. Wiley, New York (1883) Arita, Y., Mazilu, M., Dholakia, K.: Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013)