Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adam, 2014, Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression, Int. J. Remote Sens., 35, 693, 10.1080/01431161.2013.870676
Addink, 2007, The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery, Photogramm. Eng. Remote Sens., 73, 905, 10.14358/PERS.73.8.905
Arenas-García, 2008, Efficient kernel orthonormalized PLS for remote sensing applications, IEEE Trans. Geosci. Remote Sens., 46, 2872, 10.1109/TGRS.2008.918765
Atzberger, 2004, Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models, Remote Sens. Environ., 93, 53, 10.1016/j.rse.2004.06.016
Atzberger, 2012, Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery, Remote Sens. Environ., 120, 208, 10.1016/j.rse.2011.10.035
Atzberger, 2010, Comparative analysis of three chemometric techniques for the spectroradio-metric assessment of canopy chlorophyll content in winter wheat, Comput. Electron. Agric., 73, 165, 10.1016/j.compag.2010.05.006
Bacour, 2006, Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation, Remote Sens. Environ., 105, 313, 10.1016/j.rse.2006.07.014
Baranoski, 2005, A practical approach for estimating the red edge position of plant leaf reflectance, Int. J. Remote Sens., 26, 503, 10.1080/01431160512331314029
Baret, 2008, Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems, 171
Baret, 1991, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens. Environ., 35, 161, 10.1016/0034-4257(91)90009-U
Baret, 1992, Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands, Remote Sens. Environ., 41, 133, 10.1016/0034-4257(92)90073-S
Baret, 1995, The robustness of canopy gap fraction estimates from red and near-infrared reflectances: a comparison of approaches, Remote Sens. Environ., 54, 141, 10.1016/0034-4257(95)00136-O
Baret, 2007, LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm, Remote Sens. Environ., 110, 275, 10.1016/j.rse.2007.02.018
Baret, 2013, Geov1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: Principles of development and production, Remote Sens. Environ., 137, 299, 10.1016/j.rse.2012.12.027
Bartholomeus, 2012, Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition, Appl. Environ. Soil Sci., 1, 10.1155/2012/241535
Bassani, 2010, Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land, Sensors, 10, 6421, 10.3390/s100706421
Berger, 2012, ESA’s sentinel missions in support of Earth system science, Remote Sens. Environ., 120, 84, 10.1016/j.rse.2011.07.023
Broge, 2001, Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sens. Environ., 76, 156, 10.1016/S0034-4257(00)00197-8
Camacho, 2013, GEOV1: LAI, FAPAR essential climate variables and fcover global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products, Remote Sens. Environ., 137, 310, 10.1016/j.rse.2013.02.030
2009
Camps-Valls, 2006, Retrieval of oceanic chlorophyll concentration with relevance vector machines, Remote Sens. Environ., 105, 23, 10.1016/j.rse.2006.06.004
Camps-Valls, G., Tuia, D., Gómez-Chova, L., Jiménez, S., Malo, J. (Eds.), 2011. Remote Sensing Image Processing. Morgan & Claypool Publishers, LaPorte, CO, USA, Collection ‘Synthesis Lectures on Image, Video, and Multimedia Processing’, Al Bovik, Ed.
Camps-Valls, 2012, Non-linear statistical retrieval of atmospheric profiles from MetOp-IASI and MTG-IRS infrared sounding data, IEEE Trans. Geosci. Remote Sens., 50, 1759, 10.1109/TGRS.2011.2168963
Ceccato, 2002, Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach, Remote Sens. Environ., 82, 188, 10.1016/S0034-4257(02)00037-8
Chai, 2012, Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs, Int. J. Remote Sens., 33, 5712, 10.1080/01431161.2012.671553
Cho, 2007, Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression, Int. J. Appl. Earth Obs. Geoinf., 9, 414, 10.1016/j.jag.2007.02.001
Clark, 1984, Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications, J. Geophys. Res., 89, 6329, 10.1029/JB089iB07p06329
Clevers, 2014, Beyond NDVI: extraction of biophysical variables from remote sensing imagery, 363
Clevers, 2012, Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content, IEEE J. Selected Topics Appl. Earth Observ. Remote Sens., 5, 574, 10.1109/JSTARS.2011.2176468
Clevers, 2002, Derivation of the red edge index using the MERIS standard band setting, Int. J. Remote Sens., 23, 3169, 10.1080/01431160110104647
Combal, 2002, Retrieval of canopy biophysical variables from bi-directional reflectance data. Using prior information to solve the ill-posed inverse problem, Remote Sens. Environ., 84, 1, 10.1016/S0034-4257(02)00035-4
Combal, 2002, Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies, Agronomie, 22, 205, 10.1051/agro:2002008
Cooper, 1992, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn., 9, 309, 10.1007/BF00994110
Coops, 2003, Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data, IEEE Trans. Geosci. Remote Sens., 41, 1338, 10.1109/TGRS.2003.813135
Coulston, 2012, Modeling percent tree canopy cover: a pilot study, Photogramm. Eng. Remote Sens., 78, 715, 10.14358/PERS.78.7.715
Danson, 2003, Training a neural network with a canopy reflectance model to estimate crop leaf area index, Int. J. Remote Sens., 24, 4891, 10.1080/0143116031000070319
Darvishzadeh, 2008, Inversion of a radiative transfer model for estimating vegetation lai and chlorophyll in a heterogeneous grassland, Remote Sens. Environ., 112, 2592, 10.1016/j.rse.2007.12.003
Darvishzadeh, 2008, LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements, ISPRS J. Photogramm. Remote Sens., 63, 409, 10.1016/j.isprsjprs.2008.01.001
Darvishzadeh, 2011, Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models, ISPRS J. Photogramm. Remote Sens., 66, 894, 10.1016/j.isprsjprs.2011.09.013
Darvishzadeh, 2012, Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach, IEEE J. Selected Topics Appl. Earth Observ. Remote Sens., 5, 1222, 10.1109/JSTARS.2012.2186118
Daughtry, 2000, Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance, Remote Sens. Environ., 74, 229, 10.1016/S0034-4257(00)00113-9
Dawson, 1998, A new technique for interpolating the reflectance red edge position, Int. J. Remote Sens., 19, 2133, 10.1080/014311698214910
Delegido, 2010, Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC), Int. J. Appl. Earth Obs. Geoinf., 12, 165, 10.1016/j.jag.2010.02.003
Delegido, 2011, Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content, Sensors, 11, 7063, 10.3390/s110707063
Delegido, 2013, A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems, Eur. J. Agron., 46, 45, 10.1016/j.eja.2012.12.001
Doktor, 2014, Extraction of plant physiological status from hyperspectral signatures using machine learning methods, Remote Sens., 6, 12247, 10.3390/rs61212247
Donlon, 2012, The global monitoring for environment and security (GMES) sentinel-3 mission, Remote Sens. Environ., 120, 37, 10.1016/j.rse.2011.07.024
Dorigo, 2007, A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling, Int. J. Appl. Earth Obs. Geoinf., 9, 165, 10.1016/j.jag.2006.05.003
Dorigo, 2009, Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach, Remote Sens., 1, 1139, 10.3390/rs1041139
Drusch, 2012, Sentinel-2: ESA’s optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25, 10.1016/j.rse.2011.11.026
Durbha, 2007, Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer, Remote Sens. Environ., 107, 348, 10.1016/j.rse.2006.09.031
Efron, 1979, Bootstrap methods: another look at the Jacknife, Ann. Statist., 7, 1, 10.1214/aos/1176344552
Elvidge, 1995, Comparison of broad-band and narrow-band red and near-infrared vegetation indices, Remote Sens. Environ., 54, 38, 10.1016/0034-4257(95)00132-K
Fang, 2003, Retrieving LAI from Landsat 7 ETM+ data with a neural network method: simulation and validation study, IEEE Trans. Geosci. Remote Sens., 41, 2052, 10.1109/TGRS.2003.813493
Fang, 2005, A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies, Remote Sens. Environ., 94, 405, 10.1016/j.rse.2004.11.001
Fang, 2012, Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method, Remote Sens. Environ., 124, 610, 10.1016/j.rse.2012.06.013
Fang, 2012, Validation of MODIS and CYCLOPES LAI products using global field measurement data, Remote Sens. Environ., 119, 43, 10.1016/j.rse.2011.12.006
Feilhauer, 2015, Multi-method ensemble selection of spectral bands related to leaf biochemistry, Remote Sens. Environ., 164, 57, 10.1016/j.rse.2015.03.033
Fernandes, 2005, Parametric (modified least squares) and non-parametric (theil-sen) linear regressions for predicting biophysical parameters in the presence of measurement errors, Remote Sens. Environ., 95, 303, 10.1016/j.rse.2005.01.005
Filella, 1994, The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status, Int. J. Remote Sens., 15, 1459, 10.1080/01431169408954177
Fourty, 1997, Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: a simulation study, Remote Sens. Environ., 61, 34, 10.1016/S0034-4257(96)00238-6
Francl, 1997, Artificial neural network models of wheat leaf wetness, Agric. For. Meteorol., 88, 57, 10.1016/S0168-1923(97)00051-8
Gamon, 1992, A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency, Remote Sens. Environ., 41, 35, 10.1016/0034-4257(92)90059-S
Garrigues, 2008, Validation and intercomparison of global leaf area index products derived from remote sensing data, J. Geophys. Res. G: Biogeosci., 113
Gastellu-Etchegorry, 2003, An interpolation procedure for generalizing a look-up table inversion method, Remote Sens. Environ., 87, 55, 10.1016/S0034-4257(03)00146-9
GCOS, 2011. Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 update, GCOS-154). <http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf>, 138.
Geladi, 1986, Partial least squares regression: a tutorial, Anal. Chim. Acta, 185, 1, 10.1016/0003-2670(86)80028-9
Gessner, 2013, Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles, Remote Sens. Environ., 129, 90, 10.1016/j.rse.2012.10.026
Gianelle, 2007, Nadir and off-nadir hyperspectral field data: strengths and limitations in estimating grassland biophysical characteristics, Int. J. Remote Sens., 28, 1547, 10.1080/01431160600658180
Gitelson, 2003, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves, J. Plant Physiol., 160, 271, 10.1078/0176-1617-00887
Glenn, 2008, Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape, Sensors, 8, 2136, 10.3390/s8042136
Gómez-Chova, L., Muñoz-Maí, J., Laparra, V., Malo-López, J., Camps-Valls, G., 2011. Optical Remote Sensing. Advances in Signal Processing and Exploitation Techniques. Springer, Germany, Ch. A Review of Kernel Methods in Remote Sensing Data Analysis, pp. 171–206.
Gong, 1999, Inverting a canopy reflectance model using a neural network, Int. J. Remote Sens., 20, 111, 10.1080/014311699213631
Gonsamo, 2011, Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices, Int. J. Remote Sens., 32, 2069, 10.1080/01431161.2010.502153
Gopal, 1996, Remote sensing of forest change using artificial neural networks, IEEE Trans. Geosci. Remote Sens., 34, 398, 10.1109/36.485117
Guyot, 1988, High spectral resolution: determination of spectral shifts between the red and near infrared, Int. Arch. Photogramm. Remote Sens., 11, 750
Haboudane, 2002, Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture, Remote Sens. Environ., 81, 416, 10.1016/S0034-4257(02)00018-4
Haboudane, 2004, Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture, Remote Sens. Environ., 90, 10.1016/j.rse.2003.12.013
Hansen, 2002, Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression, J. Agric. Sci., 139, 307, 10.1017/S0021859602002320
Hastie, 2009
Haykin, 1999
Heiskanen, 2013, Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition, ISPRS J. Photogramm. Remote Sens., 78, 1, 10.1016/j.isprsjprs.2013.01.001
Hoerl, 1970, Ridge regression: applications to nonorthogonal problems, Technometrics, 12, 69, 10.1080/00401706.1970.10488635
Houborg, 2008, Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and spot reflectance data, Remote Sens. Environ., 112, 186, 10.1016/j.rse.2007.04.012
Huang, 2004, Estimating foliage nitrogen concentration from HyMap data using continuum removal analysis, Remote Sens. Environ., 93, 18, 10.1016/j.rse.2004.06.008
Hughes, 1968, On the mean accuracy of statistical pattern recognizers, IEEE Trans. Inf. Theory, 14, 55, 10.1109/TIT.1968.1054102
Im, 2009, Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments, Geocarto Int., 24, 293, 10.1080/10106040802556207
Im, 2012, Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing, Remote Sens., 4, 327, 10.3390/rs4020327
Jacquemoud, 1995, Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors, Remote Sens. Environ., 52, 163, 10.1016/0034-4257(95)00018-V
Jacquemoud, 2009, PROSPECT+SAIL models: a review of use for vegetation characterization, Remote Sens. Environ., 113, S56, 10.1016/j.rse.2008.01.026
Jägermeyr, 2014, A high-resolution approach to estimating ecosystem respiration at continental scales using operational satellite data, Glob. Change Biol., 20, 1191, 10.1111/gcb.12443
Jensen, 2012, Estimating urban leaf area index (LAI) of individual trees with hyperspectral data, Photogramm. Eng. Remote Sens., 78, 495, 10.14358/PERS.78.5.495
Jin, 1997, Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks, Int. J. Remote Sens., 18, 971, 10.1080/014311697218863
Jordan, 1969, Derivation of leaf area index from quality of light on the forest floor, Ecology, 50, 663, 10.2307/1936256
Kalacska, 2005, Estimating leaf area index from satellite imagery using bayesian networks, IEEE Trans. Geosci. Remote Sens., 43, 1866, 10.1109/TGRS.2005.848412
Karimi, 2008, Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations, Can. Biosyst. Eng./Le Genie des biosystems au Canada, 50, 7.13
Kavzoglu, 2003, The use of back propagating artificial neural networks in land cover classification, Int. J. Remote Sens., 24, 4907, 10.1080/0143116031000114851
Kimes, 1998, Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements, Int. J. Remote Sens., 19, 2639, 10.1080/014311698214433
Kimes, 1999, Mapping secondary tropical forest and forest age from SPOT HRV data, Int. J. Remote Sens., 20, 3625, 10.1080/014311699211246
Kimes, 2002, Recovery of forest canopy characteristics through inversion of a complex 3D model, Remote Sens. Environ., 79, 320, 10.1016/S0034-4257(01)00282-6
Knyazikhin, 1998, Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies, J. Geophys. Res. D: Atmos., 103, 6133, 10.1029/97JD03380
Knyazikhin, 2013, Hyperspectral remote sensing of foliar nitrogen content, Proc. Natl. Acad. Sci. U.S.A., 110, 10.1073/pnas.1210196109
Koetz, 2005, Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics, Remote Sens. Environ., 95, 115, 10.1016/j.rse.2004.11.017
Kraft, S., Del Bello, U., Bouvet, M., Drusch, M., Moreno, J., 2012. FLEX: ESA’s Earth Explorer 8 candidate mission. pp. 7125–7128. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 7125,7128, 22–27.
Kuusk, 1998, Monitoring of vegetation parameters on large areas by the inversion of a canopy reflectance model, Int. J. Remote Sens., 19, 2893, 10.1080/014311698214334
Labate, 2009, The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission, Acta Astronaut., 65, 1429, 10.1016/j.actaastro.2009.03.077
Laurent, 2013, A bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data, Remote Sens. Environ., 139, 6, 10.1016/j.rse.2013.07.032
Lauvernet, 2008, Multitemporal-patch ensemble inversion of coupled surface- atmosphere radiative transfer models for land surface characterization, Remote Sens. Environ., 112, 851, 10.1016/j.rse.2007.06.027
Lazaridis, 2011, Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indices, Can. J. For. Res., 41, 24, 10.1139/X10-180
Lazaro-Gredilla, 2013, Retrieval of biophysical parameters with heteroscedastic gaussian processes, Geosci. Remote Sens. Lett., IEEE PP, 1
Le Maire, 2004, Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements, Remote Sens. Environ., 89, 1, 10.1016/j.rse.2003.09.004
Le Maire, 2008, Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass, Remote Sens. Environ., 112, 3846, 10.1016/j.rse.2008.06.005
Le Maire, 2011, MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass, Remote Sens. Environ., 115, 2613, 10.1016/j.rse.2011.05.017
Leonenko, 2013, Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria, Remote Sens. Environ., 139, 257, 10.1016/j.rse.2013.07.012
Leonenko, 2013, Statistical distances and their applications to biophysical parameter estimation: information measures, m-estimates, and minimum contrast methods, Remote Sens., 5, 1355, 10.3390/rs5031355
Li, 2013, Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach, Catena, 104, 210, 10.1016/j.catena.2012.11.012
Li, 2014, Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice, J. Remote Sens., 18, 934
Liang, 2007, Recent developments in estimating land surface bio-geophysical variables from optical remote sensing, Prog. Phys. Geogr., 31, 501, 10.1177/0309133307084626
Liang, 2005, Mapping daily snow/ice shortwave broadband albedo from moderate resolution imaging spectroradiometer (MODIS): the improved direct retrieval algorithm and validation with Greenland in situ measurement, J. Geophys. Res. D: Atmos., 110, 1
Malenovský, 2006, A new hyperspectral index for chlorophyll estimation of a forest canopy: area under curve normalised to maximal band depth between 650–725 nm, EARSeL eProceedings, 5, 161
Malenovsky, 2012, Sentinels for science: potential of sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land, Remote Sens. Environ., 120, 91, 10.1016/j.rse.2011.09.026
Malenovsky, 2013, Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer, Remote Sens. Environ., 131, 85, 10.1016/j.rse.2012.12.015
Mariotto, 2013, Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission, Remote Sens. Environ., 139, 291, 10.1016/j.rse.2013.08.002
Meroni, 2004, Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations, Remote Sens. Environ., 92, 195, 10.1016/j.rse.2004.06.005
Miller, 1990, Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model, Int. J. Remote Sens., 11, 1755, 10.1080/01431169008955128
Miphokasap, 2012, Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy, Remote Sens., 4, 1651, 10.3390/rs4061651
Mitchell, 2012, Remote sensing of sagebrush canopy nitrogen, Remote Sens. Environ., 124, 217, 10.1016/j.rse.2012.05.002
Moulin, 1998, Combining agricultural crop models and satellite observations: from field to regional scales, Int. J. Remote Sens., 19, 1021, 10.1080/014311698215586
Mousivand, 2014, Global sensitivity analysis of the spectral radiance of a soil-vegetation system, Remote Sens. Environ., 145, 131, 10.1016/j.rse.2014.01.023
Mustafa, 2011, Bayesian network modeling for improving forest growth estimates, IEEE Trans. Geosci. Remote Sens., 49, 639, 10.1109/TGRS.2010.2058581
Mustafa, 2012, Improving forest growth estimates using a Bayesian network approach, Photogramm. Eng. Remote Sens., 78, 45, 10.14358/PERS.78.1.45
Mutanga, 2004, Narrow band vegetation indices overcome the saturation problem in biomass estimation, Int. J. Remote Sens., 25, 3999, 10.1080/01431160310001654923
Mutanga, 2007, Red edge shift and biochemical content in grass canopies, ISPRS J. Photogramm. Remote Sens., 62, 34, 10.1016/j.isprsjprs.2007.02.001
Mutanga, 2005, Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain, Int. J. Remote Sens., 26, 1093, 10.1080/01431160512331326738
Mutanga, 2012, High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm, Int. J. Appl. Earth Obs. Geoinf., 18, 399, 10.1016/j.jag.2012.03.012
Myneni, 2002, Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83, 214, 10.1016/S0034-4257(02)00074-3
O’Hagan, 2012, Probabilistic uncertainty specification: overview, elaboration techniques and their application to a mechanistic model of carbon flux, Environ. Model. Softw., 36, 35, 10.1016/j.envsoft.2011.03.003
Ollinger, 2011, Sources of variability in canopy reflectance and the convergent properties of plants, New Phytol., 189, 375, 10.1111/j.1469-8137.2010.03536.x
Oppelt, 2004, Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data, Int. J. Remote Sens., 25, 145, 10.1080/0143116031000115300
Pan, J., Yang, H., He, W., Xu, P., 2013. Retrieve leaf area index from HJ-CCD image based on support vector regression and physical model. In: Proceedings of SPIE – The International Society for Optical Engineering, 88871R.
Paruelo, 1997, Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models, Ecol. Model., 98, 173, 10.1016/S0304-3800(96)01913-8
Peng, 2011, Rapid detection of chlorophyll content in corn leaves by using least squares-support vector machines and hyperspectral images, Jiangsu Daxue Xuebao (Ziran Kexue Ban)/J. Jiangsu Univ. (Natural Science Edition), 32, 125
Penuelas, 1994, Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves, Remote Sens. Environ., 48, 135, 10.1016/0034-4257(94)90136-8
Penuelas, 1995, Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance, Photosynthetica, 31, 221
Peter, 2009, Applying Bayesian modelling to assess climate change effects on biofuel production, Clim. Res., 40, 249, 10.3354/cr00833
Pinty, 2001, Radiation transfer model intercomparison (rami) exercise, J. Geophys. Res. D: Atmos., 106, 11937, 10.1029/2000JD900493
Pinty, 2004, Radiation transfer model intercomparison (rami) exercise: results from the second phase, J. Geophys. Res. D: Atmos., 109
Pinty, 2011, Exploiting the MODIS albedos with the Two-Stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties, J. Geophys. Res. D: Atmos., 116
Preidl, S., Doktor, D., 2011. Comparison of radiative transfer model inversions to estimate vegetation physiological status based on hyperspectral data. Workshop on HyperspectralImage and Signal Processing: Evolution in Remote Sensing (WHISPERS).
Qu, 2012, A dynamic bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations, Int. J. Remote Sens., 33, 1106, 10.1080/01431161.2010.550642
Rahman, 1993, Coupled Surface Atmosphere reflectance (CSAR) Model. 2. Semi-empirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, 20791, 10.1029/93JD02072
Ramoelo, 2011, Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations, ISPRS J. Photogramm. Remote Sens., 66, 408, 10.1016/j.isprsjprs.2011.01.008
Rasmussen, 2006
Richardson, 2012, vol. 7, 173
Richter, 2009, Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize, Can. J. Remote Sens., 35, 230, 10.5589/m09-010
Richter, 2011, Evaluation of sentinel-2 spectral sampling for radiative transfer model based LAI estimation of wheat, sugar beet, and maize, IEEE J. Selected Topics Appl. Earth Observ. Remote Sens., 4, 458, 10.1109/JSTARS.2010.2091492
Rivera, 2013, Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model, Remote Sens., 5, 3280, 10.3390/rs5073280
Rivera, 2014, Toward a semiautomatic machine learning retrieval of biophysical parameters, IEEE J. Selected Topics Appl. Earth Observ. Remote Sens., 7, 1249, 10.1109/JSTARS.2014.2298752
Rivera, 2014, On the semi-automatic retrieval of biophysical parameters based on spectral index optimization, Remote Sens., 6, 4924, 10.3390/rs6064927
Roberts, 2012, Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission, Remote Sens. Environ., 117, 83, 10.1016/j.rse.2011.07.021
Roelofsen, 2014, Mapping a priori defined plant associations using remotely sensed vegetation characteristics, Remote Sens. Environ., 140, 639, 10.1016/j.rse.2013.09.030
Rondeaux, 1996, Optimization of soil-adjusted vegetation indices, Remote Sens. Environ., 55, 95, 10.1016/0034-4257(95)00186-7
Rouse, J., Haas, R., Schell, J., Deering, D., Harlan, J., 1974. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation, Type III 371pp, NASA/GSFC, Greenbelt MD.
Ruddick, 2014, Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: a review of recent results, Remote Sens. Environ., 146, 63, 10.1016/j.rse.2013.07.039
Schlerf, 2006, Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens. Environ., 100, 281, 10.1016/j.rse.2005.10.006
Schlerf, 2005, Remote sensing of forest biophysical variables using HyMap imaging spectrometer data, Remote Sens. Environ., 95, 177, 10.1016/j.rse.2004.12.016
Schlerf, 2010, Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy, Int. J. Appl. Earth Obs. Geoinf., 12, 17, 10.1016/j.jag.2009.08.006
Shawe-Taylor, 2004
Sims, 2002, Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ., 81, 337, 10.1016/S0034-4257(02)00010-X
Sims, 2002, Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ., 81, 337, 10.1016/S0034-4257(02)00010-X
Smith, 1993, LAI inversion using backpropagation neural network trained with multiple scattering model, IEEE Trans. Geosci. Remote Sens., 31, 1102, 10.1109/36.263783
Song, 2013, Optical remote sensing of rest leaf area index and biomass, Prog. Phys. Geogr., 37, 98, 10.1177/0309133312471367
Stagakis, 2010, Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations, Remote Sens. Environ., 114, 977, 10.1016/j.rse.2009.12.006
Stimson, 2005, Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma, Remote Sens. Environ., 96, 108, 10.1016/j.rse.2004.12.007
Stuffler, 2007, The EnMAP hyperspectral imager-An advanced optical payload for future applications in Earth observation programmes, Acta Astronaut., 61, 115, 10.1016/j.actaastro.2007.01.033
Suykens, 1999, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293, 10.1023/A:1018628609742
Thenkabail, 2000, Hyperspectral vegetation indices and their relationships with agricultural crop characteristics, Remote Sens. Environ., 71, 158, 10.1016/S0034-4257(99)00067-X
Thenkabail, 2004, Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications, Remote Sens. Environ., 91, 354, 10.1016/j.rse.2004.03.013
Tibshirani, 1996, Regression shrinkage and selection via the Lasso, J. Roy. Stat. Soc. B, 58, 267, 10.1111/j.2517-6161.1996.tb02080.x
Tipping, 2001, The relevance vector machine, J. Mach. Learn. Res., 1, 211
Trombetti, 2008, Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA, Remote Sens. Environ., 112, 203, 10.1016/j.rse.2007.04.013
Tuia, 2011, Multioutput support vector regression for remote sensing biophysical parameter estimation, IEEE Geosci. Remote Sens. Lett., 8, 804, 10.1109/LGRS.2011.2109934
Ustin, 2010, Remote sensing of plant functional types, New Phytol., 186, 795, 10.1111/j.1469-8137.2010.03284.x
Vaglio Laurin, 2014, Biodiversity mapping in a tropical West African forest with airborne hyperspectral data, PLoS ONE, 9, e97910, 10.1371/journal.pone.0097910
van der Heijden, 2007, Combining close-range and remote sensing for local assessment of biophysical characteristics of arable land, Int. J. Remote Sens., 28, 5485, 10.1080/01431160601105892
Van Wittenberghe, 2014, Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset, J. Photochem. Photobiol., B, 134, 37, 10.1016/j.jphotobiol.2014.03.010
Vapnik, 1997, Support vector method for function approximation, regression estimation, and signal processing, Adv. Neural Inform. Process. Syst., 9, 281
Verhoef, 1984, Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model, Remote Sens. Environ., 16, 125, 10.1016/0034-4257(84)90057-9
Veroustraete, F., Verstraeten, W.W., 2005. Extraction of biophysical variables using VGT-P multi-angular observations: Preliminary results. In: Proceedings of the Second International SPOT/VEGETATION Users Conference. 119–125, ISBN 92-894-9004-7. European Communities, EUR 21552EN.
Veroustraete, F., Verstraeten, W.W., Van Roey, T., Heyns, W., 2006. The use of Radiative Transfer Modelling for the extraction of Bio-geophysical variables. In: Proceedings of the 2nd International Workshop, ‘The Future of Remote Sensing’. International Archives of Photogrammetry Remote Sensing and Spatial Information in Sciences. Lemmer the Netherlands, 6 pages.
Verrelst, 2008, Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data, Remote Sens. Environ., 112, 2341, 10.1016/j.rse.2007.11.001
Verrelst, 2010, Effects of woody elements on simulated canopy reflectance: implications for forest chlorophyll content retrieval, Remote Sens. Environ., 114, 647, 10.1016/j.rse.2009.11.004
Verrelst, 2012, Retrieval of vegetation biophysical parameters using gaussian process techniques, IEEE Trans. Geosci. Remote Sens., 50, 1832, 10.1109/TGRS.2011.2168962
Verrelst, 2012, Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3, Remote Sens. Environ., 118, 127, 10.1016/j.rse.2011.11.002
Verrelst, 2012, Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data, Remote Sens., 4, 2866, 10.3390/rs4092866
Verrelst, 2013, Gaussian process retrieval of chlorophyll content from imaging spectroscopy data, IEEE J. Selected Topics Appl. Earth Observ. Remote Sens., 6, 867, 10.1109/JSTARS.2012.2222356
Verrelst, 2013, Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval, ISPRS J. Photogramm. Remote Sens., 86, 157, 10.1016/j.isprsjprs.2013.09.012
Verrelst, 2014, Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and -3 data: role of cost functions, IEEE Trans. Geosci. Remote Sens., 52, 257, 10.1109/TGRS.2013.2238242
Verrelst, J., Rivera, J., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G.P.W., Camps-Valls, G., Moreno, J., 2015. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison. ISPRS J. Photogramm. Remote Sens. http://dx.doi.org/10.1016/j.isprsjprs.2015.04.013.
Verstraete, 1996, Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing, Remote Sens. Environ., 58, 201, 10.1016/S0034-4257(96)00069-7
Verstraete, 1996, Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing, Remote Sens. Environ., 58, 201, 10.1016/S0034-4257(96)00069-7
Viedma, 2012, Modeling plant species richness using reflectance and texture data derived from quickbird in a recently burned area of central Spain, Remote Sens. Environ., 119, 208, 10.1016/j.rse.2011.12.024
Vohland, 2010, Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT+SAIL, Int. J. Appl. Earth Obs. Geoinf., 12, 71, 10.1016/j.jag.2009.10.005
Vuolo, 2013, Estimation of leaf area index using DEIMOS-1 data: application and transferability of a semi-empirical relationship between two agricultural areas, Remote Sens., 5, 1274, 10.3390/rs5031274
Wang, 2011, A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands, Precision Agric., 12, 439, 10.1007/s11119-010-9185-2
Wang, 2013, Monitoring nitrogen concentration of oilseed rape from hyperspectral data using radial basis function, Int. J. Digital Earth, 6, 550, 10.1080/17538947.2011.628414
Weiss, 1999, Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data, Remote Sens. Environ., 70, 293, 10.1016/S0034-4257(99)00045-0
Weiss, 2000, Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data, Agronomie, 20, 3, 10.1051/agro:2000105
Weiss, 2007, LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products, Remote Sens. Environ., 110, 317, 10.1016/j.rse.2007.03.001
Widlowski, 2007, Third radiation transfer model intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models, J. Geophys. Res. D: Atmos., 112
Widlowski, 2013, The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO13528, J. Geophys. Res. D: Atmos., 118, 6869, 10.1002/jgrd.50497
Wold, 1987, Principal component analysis, Chemometrics Intell. Lab. Syst., 237
Wolter, 2009, Estimation of forest structural parameters using 5 and 10 meter spot-5 satellite data, Remote Sens. Environ., 113, 2019, 10.1016/j.rse.2009.05.009
Yang, 2006, Analysis of leaf area index products from combination of MODIS terra and aqua data, Remote Sens. Environ., 104, 297, 10.1016/j.rse.2006.04.016
Yang, 2011, Inversion of a radiative transfer model for estimating forest LAI from multisource and multiangular optical remote sensing data, IEEE Trans. Geosci. Remote Sens., 49, 988, 10.1109/TGRS.2010.2071416
Yang, 2011, Estimating biophysical parameters of rice with remote sensing data using support vector machines, Sci. China Life Sci., 54, 272, 10.1007/s11427-011-4135-4
Yang, 2012, Comparison of different methods for corn LAI estimation over northeastern china, Int. J. Appl. Earth Obs. Geoinf., 18, 462
Ye, 2007, Prediction of citrus yield from airborne hyperspectral imagery, Precision Agric., 8, 111, 10.1007/s11119-007-9032-2
Ye, 2008, Potential of airborne hyperspectral imagery to estimate fruit yield in citrus, Chemometrics Intell. Lab. Syst., 90, 132, 10.1016/j.chemolab.2007.09.002
Yoder, 1995, Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales, Remote Sens. Environ., 53, 199, 10.1016/0034-4257(95)00135-N
Zandler, 2015, Quantifying dwarf shrub biomass in an arid environment: Comparing empirical methods in a high dimensional setting, Remote Sens. Environ., 158, 140, 10.1016/j.rse.2014.11.007
Zarco-Tejada, 2001, Scaling-up and model inversion methods with narrow- band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data, IEEE Trans. Geosci. Remote Sens., 39, 1491, 10.1109/36.934080
Zarco-Tejada, 2002, Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery, J. Environ. Qual., 31, 1433, 10.2134/jeq2002.1433
Zarco-Tejada, 2005, Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy, Remote Sens. Environ., 99, 271, 10.1016/j.rse.2005.09.002