Optical pulse compression using a nonlinear optical loop mirror constructed from dispersion decreasing fiber
Tóm tắt
A novel scheme to compress optical pulses is proposed and demonstrated numerically, which is based on a nonlinear optical loop mirror constructed from dispersion decreasing fiber (DDF). We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by pedestals and frequency chirps owning to nonlinear effects, the proposed scheme can completely suppress pulse pedestals and frequency chirps. Unlike the adiabatic compression technique in which DDF length must increase exponentially with input pulsewidth, the proposed scheme does not require adiabatic condition and therefore can be used to compress long pulses by using reasonable fiber lengths. For input pulses with peak powers higher than a threshold value, the compressed pulses can propagate like fundamental solitons. Furthermore, the scheme is fairly insensitive to small variations in the loop length and is more robust to higher-order nonlinear effects and initial frequency chirps than the adiabatic compression technique.
Tài liệu tham khảo
Agrawal, G. P., Applications of Nonlinear Fiber Optics, Boston: Academic, 2001, 263–318.
Baltuska, A., Wei, Z., Pshenichnikov, M. S., et al., Optical pulse compression to 5 fs at a 1-MHz repetition rate, Opt. Lett., 1997, 22(2): 102–104.
Auston, D. H., Nuss, M. C., Electrooptic generation and detection of femtosecond electrical transients, IEEE J. Quantum Electron., 1988, 24(2): 184–197.
Kitayama, K., Kimura, Y., Okamoto, K., et al., Optical sampling using an all-fiber optical Kerr shutter Appl. Phys. Lett., 1985, 46(7): 623–625
Asobe, M., Kobayashi, H., Itoh, H., et al., Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber. Opt. Lett., 1993, 18(13): 1056–1058.
Nakazawa, M., Yamamoto, T., Tamura, K. R., 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator, Electron. Lett., 2000, 36(24): 2027–2029.
Chan, K. C., Liu, H. F., Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics, IEEE J. Quantum Electron, 1995, 31(12): 2226–2235.
Chan Kam-tai, Cao Wenhua, Improved soliton-effect pulse compression by combined action of negative third-order dispersion and raman self-scattering in optical fibers, J. Opt. Soc. Am. B, 1998, 15(9): 2371–2375.
Chernikov, S. V., Mamyshev, P. V., Femtosecond soliton propagation in fibers with slowly decreasing dispersion, J. Opt. Soc. Am. B, 1991, 8(8): 1633–1641
Chernikov, S. V., Dianov, E. M., Richardson, D. J., et al., Soliton pulse compression in dispersion-decreasing fiber, Opt. Lett., 1993, 18(7): 476–478.
Tamura, K. R., Nakazawa, M., Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber, IEEE Photonics Technol. Lett., 1999, 11(3): 319–321.
Chan Kam-tai, Cao Wenhua, Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering, Opt. Commun., 2000, 184(5–6): 463–474.
Stolen, R. H., Botineau, J., Ashkin, A., Intensity discrimination of optical pulses with birefringent fibers, Opt. Lett., 1982, 7(10): 512–514.
Nikolaus, B., Grischkowsky, D., Balant, A. C., Optical pulse reshaping based on the non-linear birefringence of single-mode optical fibers, Opt. Lett., 1983, 8(3): 189–191.
Pelusi, M. D., Matsui, Y., Suzuki, A., Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror, IEEE J. Quantum Electron., 1999, 35(6): 867–874.
Tamura, K. R., Nakazawa, M., A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror. IEEE Photonics Technol. Lett., 2001, 13(5): 526–528.
Pelusi, M. D., Liu, H. F., Higher order soliton pulse compression in dispersion-decreasing optical fibers, IEEE J. Quantum Electron., 1997, 33(8): 1430–1439.
Chusseau, L., Delevague, E., 250-fs optical pulse generation by simultaneously soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation, Opt. Lett., 1994, 19(10): 734–736.
Wu, J., Li, Y., Lou, C., et al., Optimization of pulse compression with an unbalanced nonlinear optical loop mirror, Opt. Commun., 2000, 180(1–3): 43–47.
Steele, A. L., Hemingway, J. P., Nonlinear optical loop mirror constructed from dispersion decreasing fiber, Opt. Commun., 1996, 123(4–6): 487–491.
Lima, J. L. S., Sombra, A. S. B., Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber. Opt. Commun., 1999, 163(4–6): 292–300.
Mostofi, A., Hatami-Hanza, H., Chu, P. L. Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers. IEEE J. Quantum Electron., 1997, 33(4): 620–628.
Taylor, J. R., Optical Solitons—Theory and Experiment, Cambridge: Cambridge University Press, 1992 282–290.
Doran, N. J., Wood, D., Nonlinear-optical loop mirror, Opt. Lett., 1988, 13(1): 56–58.
Desem, C., Chu, P. L., Effect of chirping on soliton propagation in single-mode optical fibers. Opt. Lett., 1986, 11(4): 248–250.