Optical polarization perturbed by shear strains of ultrasonic bulk waves in anisotropic semiconductors: Multiphysics modeling and optoacoustic validation

Photoacoustics - Tập 32 - Trang 100540 - 2023
Yi He1, Hoon Sohn2,3, Osamu Matsuda4, Zhongqing Su1
1Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
2Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
3Center for 3D Printing Nondestructive Testing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
4Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Tài liệu tham khảo

Mack, 2011, Fifty years of Moore's law, IEEE Trans. Semicond. Manuf., 24, 202, 10.1109/TSM.2010.2096437 Theis, 2017, The end of moore's law: A new beginning for information technology, Comput. Sci. Eng., 19, 41, 10.1109/MCSE.2017.29 Zhang, 2019, Manufacturing technologies toward extreme precision, Int. J. Extrem. Manuf., 1, 10.1088/2631-7990/ab1ff1 del Barrio, 2019, Light to shape the future: from photolithography to 4D printing, Adv. Opt. Mater., 7, 1900598, 10.1002/adom.201900598 Choudhury, D., 2010, 3D integration technologies for emerging microsystems. 2010 IEEE MTT-S international microwave symposium, Anaheim, CA, USA. https://doi.org/10.1109/MWSYM.2010.5514747. Shulaker, 2017, Three-dimensional integration of nanotechnologies for computing and data storage on a single chip, Nature, 547, 74, 10.1038/nature22994 Lau, 2014, Overview and outlook of three-dimensional integrated circuit packaging, three-dimensional Si integration, and three-dimensional integrated circuit integration, J. Electron. Packag., 136, 10.1115/1.4028629 Wang, 2018, Piezotronics and piezo-phototronics with third-generation semiconductors, MRS Bull., 43, 922, 10.1557/mrs.2018.263 Schönfelder, 2022, Photoelectric sensors, 721 Van Zant, 2014 Liu, 2012 Khan, 2020, The future of ferroelectric field-effect transistor technology, Nat. Electron., 3, 588, 10.1038/s41928-020-00492-7 Tu, 2011, Reliability challenges in 3D IC packaging technology, Microelectron. Reliab., 51, 517, 10.1016/j.microrel.2010.09.031 Sukumaran, 2014, Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon, IEEE Trans. Compon., Packag. Manuf. Technol., 4, 786, 10.1109/TCPMT.2014.2303427 Aryan, 2018, An overview of non-destructive testing methods for integrated circuit packaging inspection, Sensors, 18, 1981, 10.3390/s18071981 Su, 2019, Automated X-ray recognition of solder bump defects based on ensemble-ELM, Sci. China Technol. Sci., 62, 1512, 10.1007/s11431-018-9324-3 Yang, 2016, A reference-free micro defect visualization using pulse laser scanning thermography and image processing, Meas. Sci. Technol., 27, 10.1088/0957-0233/27/8/085601 Nakamae, 2021, Electron microscopy in semiconductor inspection, Meas. Sci. Technol., 32, 10.1088/1361-6501/abd96d Kitami, K., Takada, M., Kikuchi, O., & Ohno, S. (2013). Development of high resolution scanning aeoustie tomograph for advanced LSI packages. Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Suzhou. https://doi.org/10.1109/IPFA.2013.6599215. Verrina, V., 2021, Laser-induced ultrasound for the detection of buried micro-and nano-structures [Doctoral thesis, University of Amsterdam]. Amsterdam. 〈https://ir.arcnl.nl/pub/164/2021-Vanessa-Verrina.pdf〉. Zhang, 2021, Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane, Phys. Rev. B, 103, 10.1103/PhysRevB.103.064303 Liu, 2021, Estimation of silicon wafer coating thickness using ultrasound generated by femtosecond laser, J. Nondestruct. Eval., Diagn. Progn. Eng. Syst., 4 Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005 Wissmeyer, 2018, Looking at sound: optoacoustics with all-optical ultrasound detection, Light.: Sci. Appl., 7, 1, 10.1038/s41377-018-0036-7 Zhang, 2023, Metal transducer-assisted acoustic deformation potential characterization via coherent acoustic phonon dynamics, Photoacoustics, 10.1016/j.pacs.2023.100489 He, 2023, Laser ultrasonic imaging of submillimeter defect in a thick waveguide using entropy-polarized bilateral filtering and minimum variance beamforming, Mech. Syst. Signal Process., 186, 10.1016/j.ymssp.2022.109863 Kim, 2019, Narrow band photoacoustic lamb wave generation for nondestructive testing using candle soot nanoparticle patches, Appl. Phys. Lett., 115, 10.1063/1.5100292 Ruello, 2015, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action, Ultrasonics, 56, 21, 10.1016/j.ultras.2014.06.004 Zheng, 2021, High-efficient photoacoustic generation with an ultrathin metallic multilayer broadband absorber, Opt. Express, 29, 8490, 10.1364/OE.420138 Ritzmann, 2020, Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation, Phys. Rev. B, 102, 10.1103/PhysRevB.102.214305 Dehoux, 2006, Effect of laser pulse duration in picosecond ultrasonics, J. Appl. Phys., 100, 10.1063/1.2353751 Anisimov, 1974, Electron emission from metal surfaces exposed to ultrashort laser pulses, Zh. Eksp. Teor. Fiz., 66, 375 Thomsen, 1986, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, 34, 4129, 10.1103/PhysRevB.34.4129 Tas, 1994, Electron diffusion in metals studied by picosecond ultrasonics, Phys. Rev. B, 49, 15046, 10.1103/PhysRevB.49.15046 Liu, 2016, Numerical simulation of damage detection using laser-generated ultrasound, Ultrasonics, 69, 248, 10.1016/j.ultras.2016.03.013 Thompson, 2020, Spatially compounded plane wave imaging using a laser-induced ultrasound source, Photoacoustics, 18, 10.1016/j.pacs.2019.100154 Zhang, 2020, Unraveling phononic, optoacoustic, and mechanical properties of metals with light-driven hypersound, Phys. Rev. Appl., 13, 10.1103/PhysRevApplied.13.014010 Białek, 2023, Fano meets Stokes: Four-order-of-magnitude enhancement of asymmetric Brillouin light scattering spectra, Photoacoustics, 10.1016/j.pacs.2023.100478 Xie, 2019, Imaging gigahertz zero-group-velocity Lamb waves, Nat. Commun., 10, 1, 10.1038/s41467-019-10085-4 Wright, 2023, Mode specific dynamics for the acoustic vibrations of a gold nanoplate, Photoacoustics, 10.1016/j.pacs.2023.100476 Maris, H.J., Antonelli, G.A., Ford, W.K., Morath, C.J., Stoner, R.J., & Tas, G., 2006, Non‐Destructive Testing Using Picosecond Ultrasonics. AIP Conference Proceedings, Brunswick, Maine. https://doi.org/10.1063/1.2184531. Hajireza, 2017, Non-interferometric photoacoustic remote sensing microscopy, Light.: Sci. Appl., 6, 10.1038/lsa.2016.278 Jang, 2020, Silicon wafer crack detection using nonlinear ultrasonic modulation induced by high repetition rate pulse laser, Opt. Lasers Eng., 129, 10.1016/j.optlaseng.2020.106074 Flizikowski, 2020, Laser induced thermoelastic surface displacement in solids detected simultaneously by photothermal mirror and interferometry, Opt. Express, 28, 7116, 10.1364/OE.386344 Pupeikis, 2021, Picosecond ultrasonics with a free-running dual-comb laser, Opt. Express, 29, 35735, 10.1364/OE.440856 Yi, 2022, Femtosecond laser ultrasonic inspection of a moving object and its application to estimation of silicon wafer coating thickness, Opt. Lasers Eng., 148, 10.1016/j.optlaseng.2021.106778 Liu, 2022, Ultrafast nonlinear ultrasonic measurement using femtosecond laser and modified lock-in detection, Opt. Lasers Eng., 150, 10.1016/j.optlaseng.2021.106844 Antoncecchi, 2020, High-resolution microscopy through optically opaque media using ultrafast photoacoustics, Opt. Express, 28, 33937, 10.1364/OE.405875 Pezeril, 2016, Laser generation and detection of ultrafast shear acoustic waves in solids and liquids, Opt. Laser Technol., 83, 177, 10.1016/j.optlastec.2016.03.019 Decremps, 2010, Equation of state, stability, anisotropy and nonlinear elasticity of diamond-cubic (ZB) silicon by phonon imaging at high pressure, Phys. Rev. B, 82, 10.1103/PhysRevB.82.104119 Wang, 2021, Shear wave generation by mode conversion in picosecond ultrasonics: Impact of grain orientation and material properties, J. Am. Ceram. Soc., 104, 2788, 10.1111/jace.17654 Thomas, 2020, Strain-induced work function in h-BN and BCN monolayers, Phys. E: Low. -Dimens. Syst. Nanostruct., 123, 10.1016/j.physe.2020.114180 Gusev, 2009, On generation of picosecond inhomogeneous shear strain fronts by laser-induced gratings, Appl. Phys. Lett., 94, 10.1063/1.3125243 Matsuda, 2008, Coherent shear phonon generation and detection with picosecond laser acoustics, Phys. Rev. B, 77, 10.1103/PhysRevB.77.224110 Matsuda, 2004, Coherent shear phonon generation and detection with ultrashort optical pulses, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.095501 Kouyaté, 2016, Theory for optical detection of picosecond shear acoustic gratings, JOSA B, 33, 2634, 10.1364/JOSAB.33.002634 Matsuda, 2020, Optical generation and detection of gigahertz shear acoustic waves in solids assisted by a metallic diffraction grating, Phys. Rev. B, 101, 10.1103/PhysRevB.101.224307 Pezeril, 2007, Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory, Phys. Rev. B, 75, 10.1103/PhysRevB.75.174307 Saito, 2010, Imaging gigahertz surface acoustic waves through the photoelastic effect, JOSA B, 27, 2632, 10.1364/JOSAB.27.002632 Stoehr, 2020, Analysis of photoelastic properties of monocrystalline silicon, J. Sens. Sens. Syst., 9, 209, 10.5194/jsss-9-209-2020 Herms, 2020, Comparative Study of the Photoelastic Anisotropy of Si and GaAs, J. Electron. Mater., 49, 5205, 10.1007/s11664-020-08141-7 Haynes, 2014 Werner, 2009, Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys. Chem. Ref. Data, 38, 1013, 10.1063/1.3243762 Hopcroft, 2010, What is the Young's Modulus of Silicon, J. Micro Syst., 19, 229, 10.1109/JMEMS.2009.2039697 Vogt, M.R., 2016, Development of physical models for the simulation of optical properties of solar cell modules [Doctoral thesis, University of Hannover]. Hannover. 〈https://www.researchgate.net/profile/Malte-Ruben-Vogt-2/publication/303300115_Development_of_Physical_Models_for_the_Simulation_of_Optical_Properties_of_Solar_Cell_Modules/links/573b9ff308aea45ee840670a/Development-of-Physical-Models-for-the-Simulation-of-Optical-Properties-of-Solar-Cell-Modules.pdf〉. Ciddor, 1996, Refractive index of air: new equations for the visible and near infrared, Appl. Opt., 35, 1566, 10.1364/AO.35.001566 Ledbetter, 1977, Elastic properties of zinc: A compilation and a review, J. Phys. Chem. Ref. Data, 6, 1181, 10.1063/1.555564