Optical polarization perturbed by shear strains of ultrasonic bulk waves in anisotropic semiconductors: Multiphysics modeling and optoacoustic validation
Tài liệu tham khảo
Mack, 2011, Fifty years of Moore's law, IEEE Trans. Semicond. Manuf., 24, 202, 10.1109/TSM.2010.2096437
Theis, 2017, The end of moore's law: A new beginning for information technology, Comput. Sci. Eng., 19, 41, 10.1109/MCSE.2017.29
Zhang, 2019, Manufacturing technologies toward extreme precision, Int. J. Extrem. Manuf., 1, 10.1088/2631-7990/ab1ff1
del Barrio, 2019, Light to shape the future: from photolithography to 4D printing, Adv. Opt. Mater., 7, 1900598, 10.1002/adom.201900598
Choudhury, D., 2010, 3D integration technologies for emerging microsystems. 2010 IEEE MTT-S international microwave symposium, Anaheim, CA, USA. https://doi.org/10.1109/MWSYM.2010.5514747.
Shulaker, 2017, Three-dimensional integration of nanotechnologies for computing and data storage on a single chip, Nature, 547, 74, 10.1038/nature22994
Lau, 2014, Overview and outlook of three-dimensional integrated circuit packaging, three-dimensional Si integration, and three-dimensional integrated circuit integration, J. Electron. Packag., 136, 10.1115/1.4028629
Wang, 2018, Piezotronics and piezo-phototronics with third-generation semiconductors, MRS Bull., 43, 922, 10.1557/mrs.2018.263
Schönfelder, 2022, Photoelectric sensors, 721
Van Zant, 2014
Liu, 2012
Khan, 2020, The future of ferroelectric field-effect transistor technology, Nat. Electron., 3, 588, 10.1038/s41928-020-00492-7
Tu, 2011, Reliability challenges in 3D IC packaging technology, Microelectron. Reliab., 51, 517, 10.1016/j.microrel.2010.09.031
Sukumaran, 2014, Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon, IEEE Trans. Compon., Packag. Manuf. Technol., 4, 786, 10.1109/TCPMT.2014.2303427
Aryan, 2018, An overview of non-destructive testing methods for integrated circuit packaging inspection, Sensors, 18, 1981, 10.3390/s18071981
Su, 2019, Automated X-ray recognition of solder bump defects based on ensemble-ELM, Sci. China Technol. Sci., 62, 1512, 10.1007/s11431-018-9324-3
Yang, 2016, A reference-free micro defect visualization using pulse laser scanning thermography and image processing, Meas. Sci. Technol., 27, 10.1088/0957-0233/27/8/085601
Nakamae, 2021, Electron microscopy in semiconductor inspection, Meas. Sci. Technol., 32, 10.1088/1361-6501/abd96d
Kitami, K., Takada, M., Kikuchi, O., & Ohno, S. (2013). Development of high resolution scanning aeoustie tomograph for advanced LSI packages. Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Suzhou. https://doi.org/10.1109/IPFA.2013.6599215.
Verrina, V., 2021, Laser-induced ultrasound for the detection of buried micro-and nano-structures [Doctoral thesis, University of Amsterdam]. Amsterdam. 〈https://ir.arcnl.nl/pub/164/2021-Vanessa-Verrina.pdf〉.
Zhang, 2021, Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane, Phys. Rev. B, 103, 10.1103/PhysRevB.103.064303
Liu, 2021, Estimation of silicon wafer coating thickness using ultrasound generated by femtosecond laser, J. Nondestruct. Eval., Diagn. Progn. Eng. Syst., 4
Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005
Wissmeyer, 2018, Looking at sound: optoacoustics with all-optical ultrasound detection, Light.: Sci. Appl., 7, 1, 10.1038/s41377-018-0036-7
Zhang, 2023, Metal transducer-assisted acoustic deformation potential characterization via coherent acoustic phonon dynamics, Photoacoustics, 10.1016/j.pacs.2023.100489
He, 2023, Laser ultrasonic imaging of submillimeter defect in a thick waveguide using entropy-polarized bilateral filtering and minimum variance beamforming, Mech. Syst. Signal Process., 186, 10.1016/j.ymssp.2022.109863
Kim, 2019, Narrow band photoacoustic lamb wave generation for nondestructive testing using candle soot nanoparticle patches, Appl. Phys. Lett., 115, 10.1063/1.5100292
Ruello, 2015, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action, Ultrasonics, 56, 21, 10.1016/j.ultras.2014.06.004
Zheng, 2021, High-efficient photoacoustic generation with an ultrathin metallic multilayer broadband absorber, Opt. Express, 29, 8490, 10.1364/OE.420138
Ritzmann, 2020, Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation, Phys. Rev. B, 102, 10.1103/PhysRevB.102.214305
Dehoux, 2006, Effect of laser pulse duration in picosecond ultrasonics, J. Appl. Phys., 100, 10.1063/1.2353751
Anisimov, 1974, Electron emission from metal surfaces exposed to ultrashort laser pulses, Zh. Eksp. Teor. Fiz., 66, 375
Thomsen, 1986, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, 34, 4129, 10.1103/PhysRevB.34.4129
Tas, 1994, Electron diffusion in metals studied by picosecond ultrasonics, Phys. Rev. B, 49, 15046, 10.1103/PhysRevB.49.15046
Liu, 2016, Numerical simulation of damage detection using laser-generated ultrasound, Ultrasonics, 69, 248, 10.1016/j.ultras.2016.03.013
Thompson, 2020, Spatially compounded plane wave imaging using a laser-induced ultrasound source, Photoacoustics, 18, 10.1016/j.pacs.2019.100154
Zhang, 2020, Unraveling phononic, optoacoustic, and mechanical properties of metals with light-driven hypersound, Phys. Rev. Appl., 13, 10.1103/PhysRevApplied.13.014010
Białek, 2023, Fano meets Stokes: Four-order-of-magnitude enhancement of asymmetric Brillouin light scattering spectra, Photoacoustics, 10.1016/j.pacs.2023.100478
Xie, 2019, Imaging gigahertz zero-group-velocity Lamb waves, Nat. Commun., 10, 1, 10.1038/s41467-019-10085-4
Wright, 2023, Mode specific dynamics for the acoustic vibrations of a gold nanoplate, Photoacoustics, 10.1016/j.pacs.2023.100476
Maris, H.J., Antonelli, G.A., Ford, W.K., Morath, C.J., Stoner, R.J., & Tas, G., 2006, Non‐Destructive Testing Using Picosecond Ultrasonics. AIP Conference Proceedings, Brunswick, Maine. https://doi.org/10.1063/1.2184531.
Hajireza, 2017, Non-interferometric photoacoustic remote sensing microscopy, Light.: Sci. Appl., 6, 10.1038/lsa.2016.278
Jang, 2020, Silicon wafer crack detection using nonlinear ultrasonic modulation induced by high repetition rate pulse laser, Opt. Lasers Eng., 129, 10.1016/j.optlaseng.2020.106074
Flizikowski, 2020, Laser induced thermoelastic surface displacement in solids detected simultaneously by photothermal mirror and interferometry, Opt. Express, 28, 7116, 10.1364/OE.386344
Pupeikis, 2021, Picosecond ultrasonics with a free-running dual-comb laser, Opt. Express, 29, 35735, 10.1364/OE.440856
Yi, 2022, Femtosecond laser ultrasonic inspection of a moving object and its application to estimation of silicon wafer coating thickness, Opt. Lasers Eng., 148, 10.1016/j.optlaseng.2021.106778
Liu, 2022, Ultrafast nonlinear ultrasonic measurement using femtosecond laser and modified lock-in detection, Opt. Lasers Eng., 150, 10.1016/j.optlaseng.2021.106844
Antoncecchi, 2020, High-resolution microscopy through optically opaque media using ultrafast photoacoustics, Opt. Express, 28, 33937, 10.1364/OE.405875
Pezeril, 2016, Laser generation and detection of ultrafast shear acoustic waves in solids and liquids, Opt. Laser Technol., 83, 177, 10.1016/j.optlastec.2016.03.019
Decremps, 2010, Equation of state, stability, anisotropy and nonlinear elasticity of diamond-cubic (ZB) silicon by phonon imaging at high pressure, Phys. Rev. B, 82, 10.1103/PhysRevB.82.104119
Wang, 2021, Shear wave generation by mode conversion in picosecond ultrasonics: Impact of grain orientation and material properties, J. Am. Ceram. Soc., 104, 2788, 10.1111/jace.17654
Thomas, 2020, Strain-induced work function in h-BN and BCN monolayers, Phys. E: Low. -Dimens. Syst. Nanostruct., 123, 10.1016/j.physe.2020.114180
Gusev, 2009, On generation of picosecond inhomogeneous shear strain fronts by laser-induced gratings, Appl. Phys. Lett., 94, 10.1063/1.3125243
Matsuda, 2008, Coherent shear phonon generation and detection with picosecond laser acoustics, Phys. Rev. B, 77, 10.1103/PhysRevB.77.224110
Matsuda, 2004, Coherent shear phonon generation and detection with ultrashort optical pulses, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.095501
Kouyaté, 2016, Theory for optical detection of picosecond shear acoustic gratings, JOSA B, 33, 2634, 10.1364/JOSAB.33.002634
Matsuda, 2020, Optical generation and detection of gigahertz shear acoustic waves in solids assisted by a metallic diffraction grating, Phys. Rev. B, 101, 10.1103/PhysRevB.101.224307
Pezeril, 2007, Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory, Phys. Rev. B, 75, 10.1103/PhysRevB.75.174307
Saito, 2010, Imaging gigahertz surface acoustic waves through the photoelastic effect, JOSA B, 27, 2632, 10.1364/JOSAB.27.002632
Stoehr, 2020, Analysis of photoelastic properties of monocrystalline silicon, J. Sens. Sens. Syst., 9, 209, 10.5194/jsss-9-209-2020
Herms, 2020, Comparative Study of the Photoelastic Anisotropy of Si and GaAs, J. Electron. Mater., 49, 5205, 10.1007/s11664-020-08141-7
Haynes, 2014
Werner, 2009, Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys. Chem. Ref. Data, 38, 1013, 10.1063/1.3243762
Hopcroft, 2010, What is the Young's Modulus of Silicon, J. Micro Syst., 19, 229, 10.1109/JMEMS.2009.2039697
Vogt, M.R., 2016, Development of physical models for the simulation of optical properties of solar cell modules [Doctoral thesis, University of Hannover]. Hannover. 〈https://www.researchgate.net/profile/Malte-Ruben-Vogt-2/publication/303300115_Development_of_Physical_Models_for_the_Simulation_of_Optical_Properties_of_Solar_Cell_Modules/links/573b9ff308aea45ee840670a/Development-of-Physical-Models-for-the-Simulation-of-Optical-Properties-of-Solar-Cell-Modules.pdf〉.
Ciddor, 1996, Refractive index of air: new equations for the visible and near infrared, Appl. Opt., 35, 1566, 10.1364/AO.35.001566
Ledbetter, 1977, Elastic properties of zinc: A compilation and a review, J. Phys. Chem. Ref. Data, 6, 1181, 10.1063/1.555564