Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hình ảnh quang học về sự thay đổi tính linh hoạt do điều kiện sợ hãi gây ra trong vỏ não thính giác
Tóm tắt
Sự thay đổi tính linh hoạt trong vỏ não thính giác do điều kiện sợ hãi gây ra, thông qua việc kết hợp một âm thanh (CS) với cú sốc điện vào chân (US), đã được nghiên cứu bằng phương pháp ghi hình quang học sử dụng thuốc nhuộm nhạy cảm với điện áp, RH795. Để điều tra các tác động của việc học tập kết hợp, tín hiệu quang học trong vỏ não thính giác phản ứng với CS (âm tần 12 kHz) và không phải CS (âm tần 4, 8, 16 kHz) đã được ghi lại trước và sau khi điều kiện bình thường và sham. Kết quả cho thấy, vùng phản ứng với CS chỉ mở rộng trong nhóm điều kiện sau quá trình này. Thêm vào đó, hằng số thời gian tăng của phản ứng thính giác với CS đã giảm đáng kể và giá trị đỉnh tương đối cùng hằng số thời gian suy giảm của phản ứng thính giác với CS đã tăng đáng kể sau điều kiện. Nghiên cứu này giới thiệu một phương pháp quang học để điều tra điều kiện sợ hãi, tính linh hoạt biểu hiện và hệ thống cholinergic. Các phát hiện được tổng hợp trong một mô hình của các cơ chế synap liên quan đến tính linh hoạt vỏ não.
Từ khóa
#vỏ não thính giác #điều kiện sợ hãi #học tập kết hợp #thuốc nhuộm nhạy cảm với điện áp #tính linh hoạt synapTài liệu tham khảo
Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536:271–286
Bandrowski AE, Moore SL, Ashe JH (2001) Cholinergic synaptic potentials in the supragranular layers of auditory cortex. Synapse 41:118–130
Bieszczad KM, Weinberger NM (2010a) Remodeling the cortex in memory: increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiol Learn Mem 94(2):127–144
Bieszczad KM, Weinberger NM (2010b) Representational gain in cortical area underlies increase of memory strength. Proc Natl Acad Sci USA 107(8):3793–3798
Bliss TVP, Collingidge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39
Bliss TVP, LÁmo T (1973) Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356
Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186
Campanac E, Debanne D (2008) Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons. J Physiol 586(3):779–793
Chen PE, Errington ML, Kneussel M, Chen G, Annala AJ, Rudhard YH, Rast GF, Specht CG, Tigaret CM, Nassar MA, Morris RG, Bliss TV, Schoepfer R (2009) Behavioral deficits and subregion-specific suppression of LTP in mice expressing a population of mutant NMDA receptors throughout the hippocampus. Learn Mem 16:635–644
Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Annu Rev Neurosci 1:171–182
Diamond DM, Dunwiddie TV, Rose GM (1988) Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat. J Neurosci 8(11):4079–4088
Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224
Edeline J-M, Massioui NN-E (1988) Retention of CS-US association learned under ketamine anesthesia. Brain Res 457:274–280
Edeline J-M, Weinberger NM (1993) Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav Neurosci 107(1):82–103
Edeline J-M, Pham P, Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107(4):539–551
Fazeli MS, Corbet J, Dunn MJ, Dolphin AC, Bliss TV (1993) Changes in protein synthesis accompanying long-term potentiation in the dentate gyrus in vivo. J Neurosci 13(4):1346–1353
Feldman DE (2009) Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci 32:33–55
Finnerty GT, Roberts LSE, Connors BW (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400:367–371
Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450:425–429
Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 846:137–143
Fujii S, Jia Y, Yang A, Sumikawa K (2000) Nicotine reverses GABAergic inhibition of long-term potentiation induction in the hippocampal CA1 region. Brain Res 863:259–265
Gilbert CD (1998) Adult cortical dynamics. Physiol Rev 78(2):467–485
Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal activity. Physiol Rev 68(4):1285–1366
Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14(5):2545–2568
Gruart A, Muñoz MD, Delgado-García JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26(4):1077–1087
Hess G, Aizenman CD, Donoghue JP (1996) Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75(5):1765–1778
Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig. J Physiol 497(3):629–638
Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12(15):3335–3339
Howe AG, Levy WB (2007) A hippocampal model predicts a fluctuating phase transition when learning certain trace conditioning paradigms. Cogn Neurodyn 1(2):143–155
Huang W, Armstrong-James M, Rema V, Diamond ME, Ebner FF (1998) Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex. J Neurophysiol 80:3261–3271
Hui GK, Wong KL, Chavez CM, Leon MI, Robin KM, Weinberger NM (2009) Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. Neurobiol Learn Mem 92(1):27–34
Kaneki K, Araki O, Tsukada M (2009) Dual synaptic plasticity in the hippocampus: Hebbian and spatiotemporal learning dynamics. Cogn Neurodyn 3(2):153–163
Karpova A, Mikhaylova M, Thomas U, Knöpfel T, Behnisch T (2006) Involvement of protein synthesis and degradation in long-term potentiation of schaffer collateral CA1 synapses. J Neurosci 26(18):4949–4955
Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718
Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260:1518–1521
Kudoh M, Shibuki K (1997) Importance of polysynaptic inputs and horizontal connectivity in the generation of tetanus-induced long-term potentiation in the rat auditory cortex. J Neurosci 17(24):9458–9465
LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184
Lippert TM, Takagaki K, Xu W, Huang X, Wu J-Y (2006) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol 98:502–512
Maren S (2001) Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci 24:897–931
Metherate R, Ashe JH (1993) Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14(2):132–143
Metherate R, Hsieh CY (2003) Regulation of glutamate synapses by nicotinic acetylcholine receptors in auditory cortex. Neurobiol Learn Mem 80:285–290
Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115:205–218
Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12:433–440
Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103
Redies H, Sieben U, Creutzfeldt OD (1989) Functional subdivisions in the auditory cortex of the guinea pig. J Comp Neurol 282:473–488
Rutkowski RG, Weinberger NM (2005) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proc Natl Acad Sci USA 102:12664–13669
Shimoff E (1972) Avoidance responding as a function of stimulus duration and relation to free shock. J Exp Anal Behav 17(3):451–461
Taufiq AM, Fujii S, Yamazaki Y, Sasaki H, Kaneko K, Li J, Kato H, Mikoshiba K (2005) Involvement of IP3 receptors in LTP and LTD induction in guinea pig hippocampal CA1 neuron. Learn Mem 12:594–600
Trepel C, Racine RJ (1998) Long-term potentiation in the neocortex of the adult, freely moving rat. Cereb Cortex 8:719–729
Tsukada M, Yamazaki Y, Kojima H (2007) Interaction between the Spatiotemporal Learning Rule (STLR) and Hebb type (HEBB) in single pyramidal cells in the hippocampal CA1 Area. Cogn Neurodyn 1(2):157–167
Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localization of auditory areas in guinea pig cortex. Exp Brain Res 132:445–456
Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5:279–290
Weinberger NM, Bakin JS (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive field plasticity, model, and mechanisms. Audiol Neurootol 3:145–167
Weinberger NW, Javid R, Lepan B (1993) Long-term retention of learning induced receptive field plasticity in the auditory cortex. Proc Natl Acad Sci USA 90:2394–2398
Yamazaki Y, Hamaue N, Sumikawa K (2002) Nicotine compensate for the loss of cholinergic function to enhance long-term potentiation induction. Brain Res 946:148–152
