Optical and electronic properties of a singly ionized double donor confined in coupled quantum dot-rings

N. Hernández1,2, R.A. López-Doria1,2, M.R. Fulla1
1Grupo en Modelación Computacional de Sistemas Mecánico-Cuánticos, Universidad Nacional de Colombia Sede Medellín, Colombia
2Centro de Investigación CIENTIC, Institución Universitaria Pascual Bravo, Medellín, Colombia

Tài liệu tham khảo

Boxberg, 2004, Quantum dots: Phenomenology, photonic and electronic properties, modeling and technology, 109 Oluwafemi, 2021 Goudarzi, 2022, Investigation of two-electron quantum dot in a magnetic field by using of quasi-exact-solvable method, Solid State Commun., 344, 10.1016/j.ssc.2022.114669 El-Nabulsi, 2020, Path integral method for quantum dissipative systems with dynamical friction: Applications to quantum dots/zero-dimensional nanocrystals, Superlattices Microstruct., 144, 10.1016/j.spmi.2020.106581 Chaudhuri, 2021, Two-electron quantum dot in a magnetic field: Analytic solution for finite potential model, Physica E, 128, 10.1016/j.physe.2020.114571 Werbos, 2022, Quantum technology to expand soft computing, Syst. Soft Comput., 4 Bose, 2004, Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots, Microelectron. Eng., 75, 43, 10.1016/j.mee.2003.11.008 Elzerman, 2004, Single-shot read-out of an individual electron spin in a quantum dot, Nature, 430, 431, 10.1038/nature02693 Tabish, 2021, Graphene quantum dot–based electrochemical biosensing for early cancer detection, Current Opinion Electrochem., 30, 10.1016/j.coelec.2021.100786 Woo, 2021, Hot topics in surface science: Quantum dots for optoelectronic applications (HTSS-QDOA), Appl. Surf. Sci. Adv., 5, 10.1016/j.apsadv.2021.100092 Henini, 2003, Self-assembled quantum dots on GaAs for optoelectronic applications, Microelectron. J., 34, 333, 10.1016/S0026-2692(03)00020-X Zhang, 2021, Construction of electron and grain boundary barrier in quantum dots light-emitting diodes: The role of NiO interface coating, Opt. Mater., 117, 10.1016/j.optmat.2021.111204 Yao, 2021, Significant efficiency enhancement of CdSe/Cds quantum-dot sensitized solar cells by black TiO2 engineered with ultrashort filamentating pulses, Appl. Surf. Sci. Adv., 6, 10.1016/j.apsadv.2021.100142 Leonard, 1993, Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett., 63, 3203, 10.1063/1.110199 Farfad, 1995, Phonons and radiative recombination in self-assembled quantum dots, Phys. Rev. B, 52, 5752, 10.1103/PhysRevB.52.5752 Zhang, 2020, Study on the effects of growth rate on GaN films properties grown by plasma-assisted molecular beam epitaxy, J. Cryst. Growth, 535, 10.1016/j.jcrysgro.2020.125539 Aiello, 2019, Optical and interface characteristics of Al0.56Ga0.44N/Al0.62Ga0.38N multiquantum wells with ∼280 nm emission grown by plasma-assisted molecular beam epitaxy, J. Cryst. Growth, 508, 66, 10.1016/j.jcrysgro.2018.12.025 Parida, 2019, Determining the polarity of droplet epitaxy grown AlGaN nanorods using piezoresponse force microscopy, Nano-Struct. Nano-Objects, 20, 10.1016/j.nanoso.2019.100398 Balakirev, 2022, Low-density arrays of ultra-small InAs nanostructures obtained by two-stage arsenic exposure during droplet epitaxy, Appl. Surf. Sci., 578, 10.1016/j.apsusc.2021.152023 Babin, 2022, Full wafer property control of local droplet etched GaAs quantum dots, J. Cryst. Growth, 591, 10.1016/j.jcrysgro.2022.126713 Dahiya, 2018, Fabrication of InAs quantum ring nanostructures on GaSb by droplet epitaxy, J. Cryst. Growth, 492, 71, 10.1016/j.jcrysgro.2018.04.016 Rastegar Sedehi, 2021, Magnetocaloric effect, magnetic susceptibility and specific heat of tuned quantum dot/ring systems, Physica E, 134, 10.1016/j.physe.2021.114886 Duan, 2022, Effects of hydrostatic pressure, temperature and Al-concentration on the second-harmonic generation of tuned quantum dot/ring under a perpendicular magnetic field, Physica B, 631, 10.1016/j.physb.2021.413644 Peng, 2021, Magnetic field controlled topological transitions of the spin field in quantum rings with spin orbit couplings, Physica E, 128, 10.1016/j.physe.2020.114545 Nasri, 2021, Electronic and optical properties of eccentric quantum ring under parallel magnetic field, Physica B, 615, 10.1016/j.physb.2021.413077 Babanli, 2020, “Aharonov–Bohm paramagnetism” and compensation points in non-interacting diluted magnetic semiconductor quantum ring, J. Magn. Magn. Mater., 495, 10.1016/j.jmmm.2019.165882 Elsaid, 2020, Impurity effects on the magnetization and magnetic susceptibility of an electron confined in a quantum ring under the presence of an external magnetic field, Chinese J. Phys., 64, 9, 10.1016/j.cjph.2020.01.002 Alhaj Ali, 2022, Simultaneous effects of Rashba, magnetic field and impurity on the magnetization and magnetic susceptibility of a GaAs-semiconductor quantum ring, J. Magn. Magn. Mater., 556, 10.1016/j.jmmm.2022.169435 Strom, 2007, Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates, Nanoscale Res. Lett., 2, 112, 10.1007/s11671-007-9040-1 Somaschini, 2011, Coupled quantum dot–ring structures by droplet epitaxy, Nanotechnology, 22, 10.1088/0957-4484/22/18/185602 Zeng, 2014, Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system, Phys. Lett. A, 378, 2713, 10.1016/j.physleta.2014.07.036 Barseghyan, 2015, Electronic states of coupled quantum dot-ring structure under lateral electric field with and without a hydrogenic donor impurity, Physica E, 69, 219, 10.1016/j.physe.2015.01.044 Movilla, 2009, Coupled donors in quantum dots: Quantum size and dielectric mismatch effects, Phys. Rev. B, 79, 10.1103/PhysRevB.79.195319 Sari, 2022, Electronic and optical properties of a D2+ complex in two-dimensional quantum dots with Gaussian confinement potential, Eur. Phys. J. Plus, 137, 464, 10.1140/epjp/s13360-022-02649-z Hernández, 2021, Optical absorption computation of a D2+ artificial molecule in GaAs/Ga1xAlxAs nanometer-scale rings, Optik, 245, 10.1016/j.ijleo.2021.167637 Salazar-Santa, 2018, Energy structure and electromagnetically induced transparency of neutral donor in a multi-hilled GaAs quantum ribbon, Phys. Lett. A, 382, 2927, 10.1016/j.physleta.2018.06.027 Castrillón, 2020, Artificial hydrogen molecule in vertically stacked Ga1xAlxAs nanoscale rings: Structural and external probes effects on their quantum levels, Physica E, 117, 10.1016/j.physe.2019.113765 Patten, 2017 Hermann, 1977, k→⋅p→ perturbation theory in III-V compounds and alloys: A reexamination, Phys. Rev. B, 15, 823, 10.1103/PhysRevB.15.823 Reyes-Gómez, 2008, Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields, Phys. Rev. B, 77, 10.1103/PhysRevB.77.115308 Kasapoglu, 2008, The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1xAlxAs double quantum well under the external fields, Phys. Lett. A, 373, 140, 10.1016/j.physleta.2008.10.080 Culchac, 2009, Hydrostatic pressure effects on electron states in GaAs–(Ga,Al)As double quantum rings, J. Appl. Phys., 105, 10.1063/1.3124643 Zachau, 1986, Electronic transport in molecular-beam-epitaxy-grown Alx Ga1−xAs, Phys. Rev. B, 33, 8564, 10.1103/PhysRevB.33.8564 Ehrenreich, 1961, Band structure and transport properties of some 3–5 compounds, J. Appl. Phys., 32, 2155, 10.1063/1.1777035 Khachatryan, 2021, Adiabatic description of the electroabsorption in strongly prolate and oblate conical quantum dots, Physica E, 134, 10.1016/j.physe.2021.114887 Cohen-Tannoudji, 1977 COMSOL Inc., 2022 Zaouali, 2022, Size-dependent interband optical properties of lens-shaped InAs/InP quantum wire, Opt. Laser Technol., 147, 10.1016/j.optlastec.2021.107676 Giraldo-Tobón, 2022, Nonlinear optical absorption and refractive index change in realistic gaAs/Ga1xAlxAs V-groove quantum wires, Mater. Sci. Semicond. Process., 148, 10.1016/j.mssp.2022.106762 Alaydin, 2022, Linear and nonlinear optical properties of semi-elliptical InAs quantum dots: Effects of wetting layer thickness and electric field, Thin Solid Films, 755, 10.1016/j.tsf.2022.139322 Zaouali, 2019, Numerical modelling of electronic and optical properties of isolated and self-assembled InAs/InP quantum dots, Optik, 182, 731, 10.1016/j.ijleo.2019.01.075 Ahn, 1987, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field, IEEE J. Quantum Electron., 23, 2196, 10.1109/JQE.1987.1073280 Boyd, 2008 Jacak, 1998, Quantum Dots Castrillón, 2017, Analysis of the eigenstates of a semiconductor hydrogenic washer-shaped structurally deformed nanoring: External crossed fields and stark-like effects, Physica B, 521, 17, 10.1016/j.physb.2017.06.036 Planelles, 2006, Quantum rings in tilted magnetic fields, Physica E, 33, 370, 10.1016/j.physe.2006.04.004 Sellami, 2021, Manipulation of linear and nonlinear optical properties of type I and type II quantum ring GaAs/AlxGa1xAs, Opt. Quantum Electron., 53, 10.1007/s11082-021-02863-6 Harrison, 2016 Fulla, 2015, Hydrostatic pressure, temperature and aluminum concentration effects on the ground state of coupled donors in a GaAs–Ga1xAlxAs quantum well, Phys. Status Solidi B, 252, 678, 10.1002/pssb.201451407 Siegel, 2002, Terahertz technology, IEEE Trans. Microw. Theory Tech., 50, 910, 10.1109/22.989974 Steel, 2021 Barseghyan, 2016, Impurity-modulated Aharonov–Bohm oscillations and intraband optical absorption in quantum dot–ring nanostructures, Physica E, 81, 31, 10.1016/j.physe.2016.02.012