Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode

Photonic Sensors - Tập 9 - Trang 135-141 - 2019
Xuejing Liu1, Yang Li1, Hongwei Cai1, Ming Ding1, Jiancheng Fang1, Wei Jin1
1School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China

Tóm tắt

A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.

Tài liệu tham khảo

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Physical Review Letters, 1967, 18(15): 577–580. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Applied Physics Letters, 2010, 97(15): 151110-1–151110-4. D. Cohen, “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer,” Science, 1972, 175(4022): 664–666. D. Budker, “Atomic physics-A new spin on magnetometry,” Nature, 2003, 422(6932): 574–575. H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Applied Physics Letters, 2006, 75(21): 211104-1–211104-3. R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine and Biology, 2012, 57(9): 2619–2632. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. K. Shah, S. S. Meyer, et al., “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, 2018, 555(7698): 657–661. T. Sander, J. Preusser, R. R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomedical Optics Express, 2012, 3(5): 981–990. A. Borna, T. R. Carter, P. Derego, C. D. James, and P. D. D. Schwindt, “Magnetic source imaging using a pulsed optically pumped magnetometer array,” IEEE Transactions on Instrumentation and Measurement, 2018, 68(2): 493–501. A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhysics News, 2012, 43(3): 20–23. C. Johnson, N. L. Adolphi, K. L. Butler, D. M. Lovato, R. Larson, P. D. D. Schwindt, et al., “Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells,” Journal of Magnetism and Magnetic Materials, 2012, 324(17): 2613–2619. A. Weis, S. Colombo, V. Dolgovskiy, Z. D. Grujic, V. N. Lebedev, and J. Zhang, “Characterizing and imaging magnetic nanoparticles by optical magnetometry,” Journal of Physics Conference Series, 2017, 793(1): 012032-1–012032-4. G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, et al., “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Applied Physics Letters, 2009, 95(17): 173701-1–173701-3. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, et al., “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, 2018, 555(7698): 657–661. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Applied Physics Letters, 2010, 97(24): 413–375. R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine and Biology, 2012, 57(9): 2619–2132. A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y. Jau, C. Berry, et al., “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Physics in Medicine and Biology, 2017, 62(23): 8909–8923. N. Shibata, M. Ohashi, T. Wakabayashi, K. Tsuchiya, S. I. Furukawa, H. Mizuguchi, et al., “Polarization mode coupling and spatial power spectrum of fluctuations along a highly birefringent holey fiber,” Journal of Lightwave Technology, 2009, 27(10): 1269–1278. D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Applied Physics Letters, 1995, 67(15): 2141–2143. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 661–666. J. C. Camparo and R. MacKay, “Spectral mode changes in an alkali rf discharge,” Journal of Applied Physics, 2007, 101(5): 53303-1–53303-6. A. Dandridge and A. B. Tveten, “Noise reduction in fiber-optic interferometer systems,” Applied Optics, 1981, 20(14): 2337–2339. T. Komljenovic, M. A. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. E. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Optics Letters, 2016, 41(8): 1773–1776. G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert, “Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber,” Optics Express, 2016, 24(10): 11164–11173. K. Bohnert, P. Gabus, J. Nehring, H. Brändle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” Journal of Lightwave Technology, 2007, 25(11): 3602–3609. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Physical Review A, 2008, 77(3): 033408-1–033408-8. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton University, Princeton, New Jersey, USA, 2008. M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Physical Review Letters, 2010, 105(24): 243001-1–243001-4. J. C. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, et al., “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Review of Scientific Instruments, 2014, 85(6): 63108-1–063108-7. G. Vasilakis, J. M. Brown, T. W. Kornack, and M. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer,” Physical Review Letters, 2009, 103(26): 261801-1–261801-4.