Optical Phenomena in Dielectric Spheres Several Light Wavelengths in Size: A Review

Allerton Press - Tập 30 Số 4 - Trang 217-241 - 2022
Boris Luk’yanchuk1, A. R. Bekirov1, Z. B. Wang2, Igor V. Minin3, Oleg V. Minin3, Andrey A. Fedyanin1
1Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
2School of Computer Science and Electronic Engineering, Bangor University, Bangor, UK
3Tomsk Polytechnical University, 634050, Tomsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 376–445 (1908). https://doi.org/10.1002/andp.19083300302

N. A. Logan, “Survey of some early studies of the scattering of plane waves by a sphere,” Proc. IEEE 53 (8), 773–785 (1965). https://doi.org/10.1109/PROC.1965.4055

S. Mayer, Plasmonics: Fundamentals and Applications (Springer, New York, 2007). https://doi.org/10.1007/0-387-37825-1

V. Klimov, Nanoplasmonics (Pan Stanford, New York, 2014). ISBN-10: 9814267163.

Z. Wang, B. Luk’yanchuk, L. Yue, R. Paniagua-Domínguez, B. Yan, J. Monks, O. V. Minin, I. V. Minin, S. Huang, and A. A. Fedyanin, “Super-resonances in microspheres: Extreme effects in field localization,” arXiv:1906.09636 (2019).

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley–Interscience, New York, 2004). https://doi.org/10.1002/9783527618156

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Sci., Singapore, 1990). https://doi.org/10.1142/0784

Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, Berlin, 1990). ISBN-10: 3642840337.

T. Pearcey, “The structure of an electromagnetic field in the neighborhood of a cusp of a caustic,” Philos. Mag. 37, 311–317 (1946). https://doi.org/10.1080/14786444608561335

M. V. Berry and C. J. Howls, “Integrals with coalescing saddles,” in NIST Handbook of Mathematical Functions (Cambridge Univ. Press, Cambridge, 2010), Chap. 36, pp. 775–793. ISBN 978-0-521-19225-5.

J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73, 235401 (2006). https://doi.org/10.1103/PhysRevB.73.235401

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354 (6314), aag2472 (2016). https://doi.org/10.1126/science.aag2472

R. Paniagua-Domingues, B. Luk’yanchuk, and A. I. Kuznetsov, “Control of scattering by isolated dielectric nanoantennas,” in Dielectric Metamaterials: Fundamentals, Designs, and Applications (Elsevier, Netherlands, 2020), Chap. 3, pp. 73–108. https://doi.org/10.1016/B978-0-08-102403-4.00008-6

D. V. Obydennov, D. A. Shilkin, E. I. Elyas, V. V. Yaroshenko, O. S. Kudryavtsev, D. A. Zuev, E. V. Lyubin, E. A. Ekimov, I. I. Vlasov, and A. A. Fedyanin, “Spontaneous light emission assisted by Mie resonances in diamond nanoparticles,” Nano Lett. 21, 10127 (2021). https://doi.org/10.1021/acs.nanolett.1c02616

A. Kwan, J. Dudley, and E. Lantz, “Who really discovered Snell’s law?” Phys. World 15 (4), 64 (2002). https://doi.org/10.1088/2058-7058/15/4/44

V. I. Arnold, “On teaching mathematics,” Russ. Math. Surveys 53 (1), 229–236 (1998).

B. S. Luk’yanchuk, R. Paniagua-Domınguez, I. V. Minin, O. V. Minin, and Z. B. Wang, “Refractive index less than two: Photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7 (6), 1820–1847 (2017). https://doi.org/10.1364/OME.7.001820

V. I. Arnold, Catastrophe Theory (Springer Science & Business Media, 2003). https://doi.org/10.1007/978-3-642-96799-3

T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Courier Corp., 2014).

B. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys. A 77, 209–215 (2003). https://doi.org/10.1007/s00339-003-2139-z

J. W. Strutt (Lord Rayleigh), “On the light from the sky, its polarization and colour,” Philos. Mag. 41, 447–454 (1871). https://doi.org/10.1080/14786447108640452

I. V. Minin, O. V. Minin, Y. Cao, B. Yan, Z. Wang, and B. Luk’yanchuk, “Photonic lenses with whispering gallery waves at Janus particles,” Opto-Electron. Sci. 1 (2), 210008 (2022). https://doi.org/10.29026/oes.2022.210008

I. V. Minin, Y. E. Geints, A. A. Zemlyanov, and O. V. Minin, “Specular-reflection photonic nanojet: Physical basis and optical trapping application,” Opt. Express 28, 22690 (2020). https://doi.org/10.1364/OE.400460

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). https://doi.org/10.1364/OPEX.12.001214

A. J. Littlefield, J. Zhu, J. F. Messinger, and L. L. Goddard, “Photonic nanojets,” Opt. Photonics News 32 (1), 34–41 (2021). https://doi.org/10.1364/OPN.32.1.000034

P. Zhang, B. Yan, G. Gu, Z. Yu, X. Chen, Z. B. Wang, and H. Yang, “Confining photonic nanojet in a microwell on microsphere lens for highly efficient light focusing, signal amplification and quantitative detection,” arXiv:2107.04115 (2021). https://doi.org/10.48550/arXiv.2107.04115

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007). https://doi.org/10.1088/0957-4484/18/48/485302

E. McLeod and V. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008). https://doi.org/10.1038/nnano.2008.150

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012). https://doi.org/10.1143/APEX.5.025201

X. A. Zhang, I.-T. Chen, and C. H. Chang, “Recent progress in near-field nanolithography using light interactions with colloidal particles: From nanospheres to three-dimensional nanostructures,” Nanotechnology 30, 352002 (2019). https://doi.org/10.1088/1361-6528/ab2282

X. Chen, T. Wu, Z. Gong, Y. Li, Y. Zhang, and B. Li, “Subwavelength imaging and detection using adjustable and movable droplet microlenses,” Photonics Res. 8, 225–234 (2020). https://doi.org/10.1364/PRJ.377795

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010). https://spie.org/news/2578-photonic-nanojets-for-laser-surgery?SSO=1

B. Yan, L. Yue, J. N. Monks, X. Yang, D. Xiong, C. Jiang, and Z. B. Wang, “Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyond,” Opt. Lett. 45 (5), 1168–1171 (2020). https://doi.org/10.1364/OL.380574

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011). https://doi.org/10.1038/ncomms1211

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016). https://doi.org/10.1038/srep24703

I. V. Minin and O. V. Minin, “Terahertz artificial dielectric cuboid lens on substrate for super-resolution images,” Opt. Quantum Electron. 49, 326 (2017). https://doi.org/10.1007/s11082-017-1165-6

H. Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2 (5), 056106 (2017). https://doi.org/10.1063/1.4983114

O. V. Minin, I. V. Minin, Y. Li, and J. Han, “Improvement of IR pyroelectric detector performance in THz range using wavelength-scale sphere-based terajet effect,” PIER Lett. 101, 29–34 (2021). https://doi.org/10.2528/PIERL21071901

Y. Samura, K. Horio, V. B. Antipov, S. E. Shipilov, A. I. Eremeev, O. V. Minin, I. V. Minin, and S. Hisatake, “Characterization of mesoscopic dielectric cuboid antenna at millimeter-wave band,” IEEE Antennas Wireless Propag. Lett. 18, 1828–1832 (2019). https://doi.org/10.1109/LAWP.2019.2930820

K. Yamada, Y. Samura, O. V. Minin, A. Kanno, N. Sekine, J. Nakajima, I. V. Minin, and S. Hisatake, “Short-range wireless transmission in the 300-GHz band using low-profile wavelength-scaled dielectric cuboid antennas,” Front. Commun. Networks 2, 702968 (2021). https://doi.org/10.3389/frcmn.2021.702968

L. Qian and S. Jianqi, “Effect of resonant scattering on photonic jet of a microsphere,” Acta Photonica Sin. 50, 729002 (2021). https://www.researching.cn/ArticlePdf/ m00009/2021/50/7/182.pdf

Laser Cleaning, Ed. by B. S. Luk’yanchuk (World Sci., Singapore, 2002). https://doi.org/10.1142/4952

V. I. Beklemyshev, V. V. Makarov, I. I. Makhonin, Yu. N. Petrov, A. M. Prokhorov, and V. I. Pustovoy, “Photo desorption of metal ions in a semiconductor-water system,” JETP Lett. 46 (7), 347–350 (1987).

W. Zapka, K. Asch, and K. Meissner, Eur. Patent EP No. 0297506 A2 (January 1989).

B. S. Luk’yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” Proc. SPIE 4065, 576–587 (2000). https://doi.org/10.1117/12.407350

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202 (1), 129–135 (2001). https://doi.org/10.1046/j.1365-2818.2001.00876.x

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys. A 72, 41–44 (2001). https://doi.org/10.1007/s003390000715

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle enhanced optical irradiation,” JETP Lett. 72 (9), 457–459 (2000). https://doi.org/10.1134/1.1339899

H.-J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B.‑U. Runge, D. Bäuerle, J. Boneberg, and P. Leide-rer, “Optical near-field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002). https://doi.org/10.1117/12.456827

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92, 2495–2500 (2002). https://doi.org/10.1063/1.1501768

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86, 161911 (2005). https://doi.org/10.1063/1.1886896

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of ultrafast pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007). https://doi.org/10.1007/s00339-007-4166-7

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, A. Pena, L. Li, and Z. Liu, “Laser ablation on nanoscales,” Proc. SPIE 7005, S50–S61 (2008). https://doi.org/10.1117/12.780065

R. Fardel, E. McLeod, Y.-C. Tsai, and C. B. Arnold, “Nanoscale ablation through optically trapped microspheres,” Appl. Phys. A 101, 41–46 (2010). https://doi.org/10.1007/s00339-010-5792-z

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “The near field properties of colloidal polystyrene microspheres on silicon,” J. Nanosci. Nanotechnol. 11, 10981–10985 (2011). https://doi.org/10.1166/jnn.2011.4081

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, “Laser induced nanobump array on magnetic glass disk for low flying height application,” J. Phys.: Conf. Ser. 59, 177–180 (2007). https://doi.org/10.1088/1742-6596/59/1/038

Z. B. Wang, W. Guo, A. Pena, D. J. Whitehead, B. S. Luk’yanchuk, L. Li, Z. Liu, Y. Zhou, and M. H. Hong, “Laser micro/nano fabrication in glass with tunable-focus particle lens array,” Opt. Express 16, 19706–19711 (2008). https://doi.org/10.1364/OE.16.019706

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974). https://doi.org/10.1098/rspa.1974.0012

P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989). https://doi.org/10.1016/0030-4018(89)90180-6

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). https://doi.org/10.1016/S0079-6638(01)80018-4

M. Berry, M. Dennis, and M. Soskin, “The plurality of optical singularities,” J. Opt. A: Pure Appl. Opt. 6, S155–S156 (2004). https://doi.org/10.1088/1464-4258/6/5/E01

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005). https://doi.org/10.1016/S0079-6638(05)47006-7

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009). https://doi.org/10.1016/S0079-6638(08)00205-9

M. R. Dennis, Y. S. Kivshar, M. S. Soskin, and G. A. Swartzlander, Jr., “Singular optics: More ado about nothing,” J. Opt. A: Pure Appl. Opt. 11, 090201 (2009). https://doi.org/10.1088/1464-4258/11/9/090201

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys, Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012). https://doi.org/10.1364/AO.384838

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004). https://doi.org/10.1103/PhysRevB.70.035418

M. V. Bashevoy, V. A. Fedotov and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13, 8372–8379 (2005). https://doi.org/10.1364/OPEX.13.008372

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by thin wire with surface plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73, 235432 (2006). https://doi.org/10.1103/PhysRevB.73.235432

B. S. Luk’yanchuk, M. I. Tribelsky, and V. Ternovsky, “Light scattering at nanoparticles close to plasmon resonance frequencies,” J. Opt. Technol. 73 (6), 371–377 (2006). https://doi.org/10.1364/JOT.73.000371

B. S. Luk’yanchuk, Z. B. Wang, M. Tribelsky, V. Ternovsky, M. H. Hong, and T. C. Chong, “Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies,” J. Phys.: Conf. Ser. 59, 234–239 (2007). https://doi.org/10.1088/1742-6596/59/1/050

B. S. Luk’yanchuk, M. I. Tribelsky, V. Ternovsky, Z. B. Wang, M. H. Hong, L. P. Shi, and T. C. Chong, “Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials,” J. Opt. A: Pure Appl. Opt. 9, S294–S300 (2007). https://doi.org/10.1088/1464-4258/9/9/S03

I. V. Minin, O. V. Minin, and B. S. Luk’yanchuk, “Mesotronic era of dielectric photonics,” Proc. SPIE, vol. 12152, 121520D (2022). https://doi.org/10.1117/12.2634133

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985). https://www.elsevier. com/books/handbook-of-optical-constants-of-solids/ palik/978-0-08-055630-7

M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73 (6), 765–767 (1983). https://doi.org/10.1364/JOSA.73.000765

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: Size effects,” Opt. Commun. 283, 490–496 (2010). https://doi.org/10.1016/j.optcom.2009.10.027

W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26, 13085–13105 (2018). https://doi.org/10.1364/OE.26.013085

Z. B. Wang, B. Luk’yanchuk, L. Yue, B. Yan, J. Monks, R. Dhama, O. V. Minin, I. V. Minin, S. M. Huang, and A. A. Fedyanin, “High order Fano resonances and giant magnetic fields in dielectric microspheres,” Sci. Rep. 9, 20293 (2019). https://doi.org/10.1038/s41598-019-56783-3

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010). https://doi.org/10.1103/PhysRevB.82.045404

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). https://doi.org/10.1364/OE.19.004815

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012). https://doi.org/10.1038/srep00492

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012). https://doi.org/10.1021/nl301594s

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and J. J. Sáenz, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012). https://doi.org/10.1038/ncomms2167

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013). https://doi.org/10.1038/ncomms2538

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013). https://doi.org/10.1021/nl4005018

R. Paniagua-Domingues, B. Luk’yanchuk, and A. I. Kuznetsov, “Control of scattering by isolated dielectric nanoantennas,” in Dielectric Metamaterials: Fundamentals Designs and Applications (Elsevier, Netherlands, 2020), Chap. 3, pp. 73–108. https://doi.org/10.1016/B978-0-08-102403-4.00008-6

B. Luk’yanchuk, N. Voshchinnikov, R. Paniagua-Dominguez, and A. Kuznetsov, “Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index,” ACS Photonics 2, 993–999 (2015). https://doi.org/10.1021/acsphotonics.5b00261

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, P. Belov, A. Karabchevsky, A. B. Evlyukhin, Y. Kivshar, and A. S. Snalin, “Transverse scattering and generalized Kerker effects in all-dielectric Mie-resonant metaoptics,” Phys. Rev. Lett. 122, 193905 (2019). https://doi.org/10.1103/PhysRevLett.122.193905

V. Savinov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Optical anapoles,” Commun. Phys. 2, 1–4 (2019). https://doi.org/10.1038/s42005-019-0167-z

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and T. C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). https://doi.org/10.1038/nmat2810

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). https://doi.org/10.1103/RevModPhys.82.2257

A. I. Musorin, M. G. Barsukova, A. S. Shorokhov, B. S. Luk’yanchuk, and A. A. Fedyanin, “Manipulating light intensity by mangetophotonic metasurfaces,” J. Magn. Magn. Mater. 459, 165 (2018). https://doi.org/10.1016/j.jmmm.2017.11.049

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni–Si metasurfaces,” APL Photonics 4, 016102 (2019). https://doi.org/10.1063/1.5066307

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009). https://doi.org/10.1021/nn900012r

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010). https://doi.org/10.1021/nn901580r

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011). https://doi.org/10.1021/nn202876k

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012). https://doi.org/10.1021/nn3007898

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70 (1), 37–41 (2002). https://doi.org/10.1119/1.1412644

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74 (2), 259–266 (2006). https://doi.org/10.1088/0031-8949/74/2/020

M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems (Kluwer Academic, Dordrecht, 1989). https://doi.org/10.1017/S0022112091221278

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20 (10), 22–27 (2009). https://doi.org/10.1364/OPN.20.10.000022

M. Rahmani, B. Lukiyanchuk, and M. H. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7, 329–349 (2013). https://doi.org/10.1002/lpor.201200021

B. S. Luk’yanchuk, Z. B. Wang, A. E. Miroshnichenko, Yu. S. Kivshar, A. I. Kuznetsov, D. L. Gao, L. Gao, and C.-W. Qiu, “Nano-Fano resonances and topological optics,” in Singular and Chiral Nanoplasmonics, Ed. by S. Boriskina and N. I. Zheludev (CRC Press, Boca Raton, FL, 2014), Chap. 9, pp. 285–310. ISBN 9789814613170.

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93, 053837 (2016). https://doi.org/10.1103/PhysRevA.93.053837

L. Yue, Z. Wang, B. Yan, J. Monks, Y. Joya, R. Dhama, O. V. Minin, and I. V. Minin, “Super-enhancement focusing of teflon spheres,” Ann. Phys. 532, 2000373 (2020). https://doi.org/10.1002/andp.202000373

B. Luk’yanchuk, L. M. Vasilyak, V. Ya. Pecherkin, S. P. Vetchinin, V. E. Fortov, Z. B. Wang, R. Paniagua-Domínguez, and A. A. Fedyanin, “Colossal magnetic fields in high refractive index materials at microwave frequencies,” Sci. Rep. 11, 23453 (2021). https://doi.org/10.1038/s41598-021-01644-1

B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: An interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013). https://doi.org/10.1088/2040-8978/15/7/073001

Y. Aharonov, F. Colombo, I. R. Sabadini, D. C. Struppa, and J. Tollaksen, “Some mathematical properties of superoscillations,” J. Phys. A: Math. Theor. 44, 365304 (2011). https://doi.org/10.1088/1751-8113/44/36/365304

M. V. Berry and N. Moiseyev, “Superoscillations and supershifts in phase space: Wigner and Husimi function interpretations,” J. Phys. A: Math. Theor. 47, 315203 (2014). https://doi.org/10.1088/1751-8113/47/31/315203

M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. Rogers, F. Qin, M. Hong, and X. Luo, “Roadmap on superoscillations,” J. Opt. 21, 053002 (2019). https://doi.org/10.1088/2040-8986/ab0191

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A: Math. Gen. 39, 6965 (2006). https://doi.org/10.1088/0305-4470/39/22/011

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008). https://doi.org/10.1038/nmat2163

M. V. Berry, “Five momenta,” Eur. J. Phys. 44, 1337–1348 (2003). https://doi.org/10.1088/0143-0807/34/6/1337

B. S. Luk’yanchuk, T. C. Chong, L. P. Shi, M. I. Tribelsky, Z. B. Wang, L. Li, C. W. Qiu, C. J. R. Sheppard, and J. H. Wu, “What we expect from weakly dissipating materials at the range of plasmon resonance frequencies,” IEEE PhotonicsGlobal@Singapore (IPGS), Singapore, December 8–11, 2008 (IEEE, 2009), Vols. 1–2, pp. 187–190. https://doi.org/10.1109/IPGC.2008.4781348

V. B. Gil’denburg and I. G. Kondrat’ev, “Diffraction of electromagnetic waves by a bounded plasma in the presence of spatial dispersion,” Radiotekh. Electron. 10, 658–664 (1965) [in Russian].

M. I. Tribel’skii, “Resonant scattering of light by small particles,” Zh. Eksp. Teor. Fiz. 86, 915–919 (1984) [in Russian].

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006). https://doi.org/10.1103/PhysRevLett.97.263902

M. I. Tribelsky and B. S. Luk’yanchuk, “Light scattering by small particles and their light heating: New aspects of the old problems,” in Fundamentals of Laser-Assisted Micro- and Nanotechnologies (Springer, Cham, 2014), Chap. 6, pp. 125–146. https://doi.org/10.1007/978-3-319-05987-7_6

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 2002). ISBN 9780750626347.

M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94, 14004 (2011). https://doi.org/10.1209/0295-5075/94/14004

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New J. Phys. 14, 093022 (2012). https://doi.org/10.1088/1367/1-26304/9/093022

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983). https://doi.org/10.1119/1.13262

B. Klębowski, J. Depciuch, M. Parlińska-Wojtan, and J. Baran, “Applications of noble metal-based nanoparticles in medicine,” Int. J. Mol. Sci. 19, 4031 (2018). https://doi.org/10.3390/ijms19124031

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263–271 (2016). https://doi.org/10.1038/nmat4563

G. N. Afanasiev and V. M. Dubovik, “Some remarkable charge-current configurations,” Phys. Part. Nucl. 29 (4), 366–391 (1998). https://wwwinfo.jinr.ru/publish/Archive/Pepan/1998-v29/v-29-4/pdf_obzory/v29p4_ 03.pdf

Ya. B. Zeldovich, “Electromagnetic interaction with parity violation,” Sov. Phys.-JETP 6, 1184–1186 (1958).

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. E 65, 046609 (2002). https://doi.org/10.1103/PhysRevE.65.046609

C. M. Ho and R. J. Scherrer, “Anapole dark matter,” Phys. Lett. B 722, 341–346 (2013). https://doi.org/10.1016/j.physletb.2013.04.039

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015). https://doi.org/10.1038/ncomms9069

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuzne-tsov, A. E. Miroshnichenko, and Y.S. Kivshar, “Suppression of scattering for small dielectric particles: Anapole mode and invisibility,” Philos. Trans. R. Soc., A 375, 20160069 (2017). https://doi.org/10.1098/rsta.2016.0069

B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuzne-tsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Hybrid anapole modes of high-index dielectric nanoparticles,” Phys. Rev. A 95, 063820 (2017). https://doi.org/10.1103/PhysRevA.95.063820

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010). https://doi.org/10.1126/science.1197172

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12 (10), 5239–5244 (2012). https://doi.org/10.1021/nl302418n

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015). https://doi.org/10.1103/PhysRevX.5.011036

L. Wei, Z. Xi, N. Bhattacharya, and H. P. Urbach, “Excitation of the radiationless anapole mode,” Optica 3, 799–802 (2016). https://doi.org/10.1364/OPTICA.3.000799

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95, 035104 (2017). https://doi.org/10.1103/PhysRevB.95.035104

J. S. T. Gongora, A. E. Miroshnichenko, Y. S. Kivshar, and A. Fratalocchi, “Anapole nanolasers for mode-locking and ultrafast pulse generation,” Nat. Commun. 8, 15535 (2017). https://doi.org/10.1038/ncomms15535

P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y. W. Huang, P. R. Wu, Y. H. Chen, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Optical anapole metamaterial,” ACS Nano 12, 1920–1927 (2018). https://doi.org/10.1021/acsnano.7b08828

K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, and Y. S. Kivshar, “Optical anapoles: Concepts and applications,” Adv. Opt. Mater. 7, 1801350 (2019). https://doi.org/10.1002/adom.201801350

N. Pavlov, I. Stenishchev, A. Ospanova, P. Belov, P. Kapitanova, and A. Basharin, “Toroidal dipole mode observation in situ,” Phys. Status Solidi B 257, 1900406 (2020). https://doi.org/10.1002/pssb.201900406

K. E. Ballantine and J. Ruostekoski, “Radiative toroidal dipole and anapole excitations in collectively responding arrays of atoms,” arXiv:2005.05918v1 (2020).

D. C. Zografopoulos, A. Ferraro, J. F. Algorri, P. Martín-Mateos, B. García-Cámara, A. Moreno-Oyervides, V. Krozer, P. Acedo, R. Vergaz, J. M. Sánchez-Pena, and R. Beccherelli, “All-dielectric silicon metasurface with strong subterahertz toroidal dipole resonance,” Adv. Opt. Mater. 7 (19), 1900777 (2019). https://doi.org/10.1002/adom.201900777

D. C. Zografopoulos, J. F. Algorri, A. Ferraro, B. García-Cámara, J. M. Sánchez-Pena, and R. Beccherelli, “Toroidal metasurface resonances in microwave waveguides,” Sci. Rep. 9, 7544 (2019). https://doi.org/10.1038/s41598-019-44093-7

A. K. Ospanova, I. V. Stenishchev, and A. A. Basharin, “Anapole mode sustaining silicon metamaterials in visible spectral range,” Laser Photonics Rev. 12, 1870031 (2018). https://doi.org/10.1002/lpor.201870031

J. F. Algorri, D. C. Zografopoulos, A. Ferraro, B. García-Cámara, R. Vergaz, R. Beccherelli, and J. M. Sánchez-Pena, “Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing,” Nanomaterials 9, 30 (2018). https://doi.org/10.3390/nano9010030

N. A. Nemkov, A. A. Basharin, and V. A. Fedotov, “Nonradiating sources, dynamic anapole, and Aharonov–Bohm effect,” Phys. Rev. B 95, 165134 (2017). https://doi.org/10.1103/PhysRevB.95.165134

N. A. Nemkov, I. V. Stenishchev, and A. A. Basharin, “Nontrivial nonradiating all-dielectric anapole,” Sci. Rep. 7, 1064 (2017). https://doi.org/10.1038/s41598-017-01127-2

V. A. Zenin, C. E. Garcia-Ortiz, A. B. Evlyukhin, Y. Yang, R. Malureanu, S. M. Novikov, V. Coello, B. N. Chichkov, S. I. Bozhevolnyi, A. V. Lavrinenko, and N. A. Mortensen, “Engineering nanoparticles with pure high-order multipole scattering,” ACS Photonics 7, 1067–1075 (2020). https://doi.org/10.1021/acsphotonics.0c00078

M. Gupta, Y. K. Srivastava, and R. Singh, “A toroidal metamaterial switch,” Adv. Mater. 30, 1704845 (2018). https://doi.org/10.1002/adma.201704845

L. Cong, V. Savinov, Y. K. Srivastava, S. Han, and R. Singh, “A metamaterial analog of the Ising model,” Adv. Mater. 30, 1804210 (2018). https://doi.org/10.1002/adma.201804210

M. Gupta and R. Singh, “Toroidal versus Fano resonances in high Q planar THz metamaterials,” Adv. Opt. Mater. 4, 2119–2125 (2016). https://doi.org/10.1002/adom.201600553

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28, 8206–8211 (2016). https://doi.org/10.1002/adma.201601611

A. K. Ospanova, A. Basharin, A. E. Miroshnichenko, and B. Luk’yanchuk, “Generalized hybrid anapole modes in all-dielectric ellipsoid particles [Invited],” Opt. Mater. Express 11, 23–34 (2021). https://doi.org/10.1364/OME.414340

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018). https://doi.org/10.1021/acsphotonics.7b01440

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16, 4635 (2016). https://doi.org/10.1021/acs.nanolett.6b01958

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2016). https://doi.org/10.1021/acsnano.6b07568

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal–dielectric hybrid nanoantennas,” Nano Lett. 17, 2647–2651 (2017). https://doi.org/10.1021/acs.nanolett.7b00462

V. F. Gili, L. Ghirardini, D. Rocco, G. Marino, I. Favero, I. Roland, G. Pellegrini, L. Duò, M. Finazzi, L. Carletti, A. Locatelli, A. Lemaître, D. Neshev, C. De Angelis, G. Leo, and M. Celebrano, “Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode,” Beilstein J. Nanotechnol. 9, 2306–2314 (2018). https://doi.org/10.3762/bjnano.9.215

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019). https://doi.org/10.1515/nanoph-2019-0024

M. Timofeeva, L. Lang, F. Timpu, C. Renaut, A. Bouravleuv, I. Shtrom, G. Cirlin, and R. Grange, “Anapoles in free-standing III–V nanodisks enhancing second-harmonic generation,” Nano Lett. 18, 3695–3702 (2018). https://doi.org/10.1021/acs.nanolett.8b00830

L. Xu, M. Rahmani, K. Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, I. Staude, G. Zhang, D. Neshev, and A. E. Miroshnichenko, “Boosting third-harmonic generation by a mirror-enhanced anapole resonator,” Light: Sci. Appl. 7, 44 (2018). https://doi.org/10.1038/s41377-018-0051-8

A. V. Panov, “Optical Kerr nonlinearity of arrays of all-dielectric high-index nanodisks in the vicinity of the anapole state,” Opt. Lett. 45, 3071–3074 (2020). https://doi.org/10.1364/OL.391991

J. Yao, B. Li, G. Cai, and Q. H. Liu, “Doubly mirror-induced electric and magnetic anapole modes in metal-dielectric-metal nanoresonators,” Opt. Lett. 46, 576–579 (2021). https://doi.org/10.1364/OL.415423

A. Tripathi, H. R. Kim, P. Tonkaev, S. J. Lee, S. V. Makarov, S. S. Kruk, M. V. Rybin, H. G. Park, and Y. Kivshar, “Lasing action from anapole metasurfaces,” Nano Lett. 21, 6563–6568 (2021). https://doi.org/10.1021/acs.nanolett.1c01857

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017). https://doi.org/10.1103/PhysRevLett.119.243901

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929),” in Collected Works of Eugene Paul Wigner (Springer, 1993), pp. 291–293. https://ui.adsabs.harvard.edu/ abs/1929PhyZ…30..467V/abstract

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985). https://doi.org/10.1103/PhysRevA.32.3231

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016). https://doi.org/10.1038/natrevmats.2016.48

K. Koshelev, A. Bogdanov, and Yu. Kivshar, “Engineering with bound states in the continuum,” Opt. Photonics News 31, 38–45 (2020). https://doi.org/10.1364/OPN.31.1.000038

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018). https://doi.org/10.1038/s41565-018-0245-5

A. M. Chernyak, M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A. A. Fedyanin, “Bound states in the continuum in magnetophotonic metasurfaces,” JETP Lett. 111, 46–49 (2020). https://doi.org/10.1134/S0021364020010105

O. V. Minin and I. V. Minin, “Optical phenomena in mesoscale dielectric particles,” Photonics 8, 591 (2021). https://doi.org/10.3390/photonics8120591