Optical Microcavity: Sensing down to Single Molecules and Atoms

Sensors - Tập 11 Số 2 - Trang 1972-1991
Tomoyuki Yoshie1, Lingling Tang1, Shu-Yu Su1
1Electrical and Computer Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA

Tóm tắt

This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

Từ khóa


Tài liệu tham khảo

Vahala, 2003, Optical microcavities, Nature, 424, 839, 10.1038/nature01939

Lukosz, 1995, Integrated optical chemical and direct biochemical sensors, Sens. Actuat. B, 29, 37, 10.1016/0925-4005(95)01661-9

Vollmer, 2008, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat. Methods, 5, 591, 10.1038/nmeth.1221

Weiss, 2009, Current status and outlook for silicon-based optical biosensors, Phys. E, 41, 1071, 10.1016/j.physe.2008.08.031

Homola, J. (2006). Surface Plasmon Resonance Based Sensors, Springer.

Fleischmann, 1974, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett, 26, 163, 10.1016/0009-2614(74)85388-1

Wabuyele, 2010, Plasmonics nanoprobes: Detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene, Anal. Bioanal. Chem, 398, 729, 10.1007/s00216-010-3992-1

Yan, 2007, Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor, Sens. Actuat. B, 121, 61, 10.1016/j.snb.2006.09.032

White, 2007, SERS-based detection in an optofluidic ring resonator platform, Opt. Express, 15, 17433, 10.1364/OE.15.017433

Chen, 2009, Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing, Appl. Phys. Lett, 94, 073117, 10.1063/1.3083551

Hwang, 2008, Plasmonic Sensing of biological analytes through nanoholes, IEEE Sens. J, 8, 2074, 10.1109/JSEN.2008.2007663

Cooper, 2003, Label-free screening of bio-molecular interactions, Anal. Bioanal. Chem, 377, 834, 10.1007/s00216-003-2111-y

Gelfand, 2009, Nanocavity plasmonic device for ultrabroadband single molecule sensing, Opt. Lett, 34, 1087, 10.1364/OL.34.001087

Nakatani, 2001, Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance, Nat. Biotechnol, 19, 51, 10.1038/83505

Armani, 2007, Label-free, single-molecule detection with optical microcavities, Science, 317, 783, 10.1126/science.1145002

Zhang, 2010, Ultimate quality factor of silica microtoroid resonant cavities, Appl. Phys. Lett, 96, 153304, 10.1063/1.3398008

Zhu, 2010, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics, 4, 46, 10.1038/nphoton.2009.237

Koch, 2009, Reflection-mode sensing using optical microresonators, Appl. Phys. Lett, 95, 201111, 10.1063/1.3263143

Arnold, 2010, Whispering gallery mode bio-sensor for label-free detection of single molecules: Thermo-optic vs. reactive mechanism, Opt. Express, 18, 281, 10.1364/OE.18.000281

Vollmer, 2008, Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl. Acad. Sci. USA, 105, 20701, 10.1073/pnas.0808988106

Luan, 2008, Integrated optical sensor in a digital microfluidic platform, IEEE Sens. J, 8, 628, 10.1109/JSEN.2008.918717

Adams, 2005, Microfluidic integration of porous photonic crystal nanolasers for chemical sensing, IEEE J. Sel. Areas Commun, 23, 1348, 10.1109/JSAC.2005.851192

Monat, 2007, Integrated optofluidics: A new river of light, Nat. Photonics, 1, 106, 10.1038/nphoton.2006.96

White, 2006, Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides, Appl. Phys. Lett, 89, 191106, 10.1063/1.2387112

Sernelius, B.E. (2001). Surface Modes in Physics, Wiley-VCH.

Senlik, 2010, Optical microcavities clad by low-absorption electrode media, IEEE Photonic. J, 2, 794, 10.1109/JPHOT.2010.2071413

Chow, 2004, Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity, Opt. Lett, 29, 1093, 10.1364/OL.29.001093

Bartolozzi, 2007, Silicon-on-Insulator microring resonator forsensitive and label-free biosensing, Opt. Express, 15, 7610, 10.1364/OE.15.007610

DeLouise, 2005, Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity, Anal. Chem, 77, 3222, 10.1021/ac048144+

Hanumegowda, 2005, Refractometric sensors based on microsphere resonators, Appl. Phys. Lett, 87, 201107, 10.1063/1.2132076

Krioukov, 2002, Sensor based on an integrated optical microcavity, Opt. Lett, 27, 512, 10.1364/OL.27.000512

Lu, 2009, Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing, Appl. Phys. Lett, 94, 141110, 10.1063/1.3117225

Robinson, 2008, On-chip gas detection in silicon optical microcavities, Opt. Express, 16, 4296, 10.1364/OE.16.004296

Schweinsberg, 2007, An environmental sensor based on an integrated optical whispering gallery mode disk resonator, Sens. Actuat. B, 123, 727, 10.1016/j.snb.2006.10.007

Xu, 2007, Optical microfiber coil resonator refractometric sensor, Opt. Express, 15, 7888, 10.1364/OE.15.007888

Ryckebosch, 2010, Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index, Opt. Express, 18, 4049, 10.1364/OE.18.004049

Falco, 2009, Chemical sensing in slotted photonic crystal heterostructure cavities, Appl. Phys. Lett, 94, 063503, 10.1063/1.3079671

Levi, 2007, Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing, Proc. SPIE, 6447, 64470P, 10.1117/12.705670

Ryckebosch, E.C.I., Dündar, M.A., Nötzel, R., Karouta, F., van IJzendoorn, L.J., and van der Heijden, R.W. (2009, January 5–6). Refractive index sensing with an InGaAsP photonic crystal membrane cavity by means of photoluminescence. Brussels, Belgium.

Sunner, 2008, Photonic crystal cavity based gas sensor, Appl. Phys. Lett, 92, 261112, 10.1063/1.2955523

Hu, 2009, Design guidelines for optical resonator biochemical sensors, J. Opt. Soc. Am. B, 26, 1032, 10.1364/JOSAB.26.001032

Palik, E.D. (1998). Handbook of Optical Constants of Solids, Academic Press.

Vuckovic, 2002, Optimization of the Q factor in photonic crystal microcavities, IEEE J. Quantum Electron, 38, 850, 10.1109/JQE.2002.1017597

Akahane, 2005, Fine-tuned high-Q photonic-crystal nanocavity, Opt. Express, 13, 1202, 10.1364/OPEX.13.001202

Englund, 2005, General recipe for designing photonic crystal cavities, Opt. Express, 13, 5961, 10.1364/OPEX.13.005961

Kuramochi, 2006, Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect, Appl. Phys. Lett, 88, 041112, 10.1063/1.2167801

Kuramochi, 2010, Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings, Opt. Express, 18, 15859, 10.1364/OE.18.015859

Loncar, 2004, High quality factors and room-temperature lasing in a modified single-defect photonic crystal cavity, Opt. Lett, 29, 721, 10.1364/OL.29.000721

McCutcheon, 2008, Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal, Opt. Express, 16, 19136, 10.1364/OE.16.019136

Nozaki, 2007, Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser, Opt. Express, 15, 7506, 10.1364/OE.15.007506

Song, 2005, Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Mater, 4, 207, 10.1038/nmat1320

Spillane, 2005, Ultrahigh- Q toroidal microresonators for cavity quantum electrodynamics, Phys. Rev. A, 71, 013817, 10.1103/PhysRevA.71.013817

Srinivasan, 2006, Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots, Opt. Express, 14, 1094, 10.1364/OE.14.001094

Vuckovic, 2003, Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot, Appl. Phys. Lett, 82, 2374, 10.1063/1.1567824

Yoshie, 2004, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, 432, 200, 10.1038/nature03119

Zhang, 2004, Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs, Opt. Express, 12, 3988, 10.1364/OPEX.12.003988

Mabuch, 2002, Cavity quatnum electrodynamics: Coherence in context, Science, 298, 1372, 10.1126/science.1078446

Houdre, 1995, Saturation of the strong-coupling regime in a semiconductor microcavity—free-carrier bleaching of cavity polaritons, Phys. Rev. B, 52, 7810, 10.1103/PhysRevB.52.7810

Peter, 2005, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett, 95, 067401, 10.1103/PhysRevLett.95.067401

Reithmaier, 2004, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature, 432, 197, 10.1038/nature02969

Srinivasan, 2007, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system, Nature, 450, 862, 10.1038/nature06274

Englund, 2007, Controlling cavity reflectivity with a single quantum dot, Nature, 450, 857, 10.1038/nature06234

Thompson, 1992, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett, 68, 1132, 10.1103/PhysRevLett.68.1132

Boca, 2004, Observation of the vacuum Rabi spectrum for one trapped atom, Phys. Rev. Lett, 93, 233603, 10.1103/PhysRevLett.93.233603

Manuz, 2005, Normal-mode spectroscopy of a single-bound-atom-cavity system, Phys. Rev. Lett, 94, 033002, 10.1103/PhysRevLett.94.033002

Ren, 2007, High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria, Opt. Express, 15, 17410, 10.1364/OE.15.017410

Vollmer, 2002, Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett, 80, 4057, 10.1063/1.1482797

Noto, 2007, Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes, Biophys. J, 92, 4466, 10.1529/biophysj.106.103200

Teraoka, 2003, Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium, J. Opt. Soc. Am. B, 20, 1937, 10.1364/JOSAB.20.001937

Topolancik, 2007, Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities, Biophys. J, 92, 2223, 10.1529/biophysj.106.098806

Arnold, 2003, Shift of whispering-gallery modes in microspheres by protein adsorption, Opt. Lett, 28, 272, 10.1364/OL.28.000272

Arnold, 2008, MicroParticle photophysics illuminates viral bio-sensing, Faraday Discuss, 137, 65, 10.1039/B702920A

Keng, 2007, Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion, Appl. Phys. Lett, 91, 103902, 10.1063/1.2778351

Vollmer, 2003, Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities, Biophys. J, 85, 1974, 10.1016/S0006-3495(03)74625-6

Blair, 2001, Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities, Appl. Opt, 40, 570, 10.1364/AO.40.000570

Boyd, 2001, Sensitive disk resonator photonic biosensor, Appl. Opt, 40, 5742, 10.1364/AO.40.005742

Chao, 2003, Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Appl. Phys. Lett, 83, 1527, 10.1063/1.1605261

Yalcin, 2006, Optical sensing of biomolecules using microring resonators, IEEE J. Sel. Top. Quantum Electron, 12, 148, 10.1109/JSTQE.2005.863003

Sumetsky, 2007, Optical liquid ring resonator sensor, Opt. Express, 15, 14376, 10.1364/OE.15.014376

Chao, 2006, Polymer microring resonators for biochemical sensing applications, IEEE J. Sel. Top. Quantum Electron, 12, 134, 10.1109/JSTQE.2005.862945

Sumetsky, 2008, Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators, IEEE J. Lightwave Technol, 26, 21, 10.1109/JLT.2007.911898

Yablonovitch, 1987, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett, 58, 2059, 10.1103/PhysRevLett.58.2059

John, 1987, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett, 58, 2486, 10.1103/PhysRevLett.58.2486

Deotare, 2009, High quality factor photonic crystal nanobeam cavities, Appl. Phys. Lett, 94, 121106, 10.1063/1.3107263

Aoki, 2003, Microassembly of semiconductor three-dimensional photonic crystals, Nat. Mater, 2, 117, 10.1038/nmat802

Cheng, 1995, Fabrication of photonic band-gap crystals, J. Vac. Sci. Technol. B, 13, 2696, 10.1116/1.588051

Ho, 1990, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett, 65, 3152, 10.1103/PhysRevLett.65.3152

Ishizaki, 2009, Manipulation of photons at the surface of three-dimensional photonic crystals, Nature, 460, 367, 10.1038/nature08190

Noda, 2000, Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science, 289, 604, 10.1126/science.289.5479.604

Ogawa, 2004, Control of light emission by 3D photonic crystals, Science, 305, 227, 10.1126/science.1097968

Qi, 2004, A three-dimensional optical photonic crystal with designed point defects, Nature, 429, 538, 10.1038/nature02575

Tang, 2010, High-Q hybrid 3D-2D slab-3D photonic crystal microcavity, Opt. Lett, 35, 3144, 10.1364/OL.35.003144

Tang, 2010, Woodpile photonic crystal fabricated in GaAs by two-directional etching method, J. Vac. Sci. Technol. B, 28, 301, 10.1116/1.3308972

Tang, 2007, Ultra-high-Q three-dimensional photonic crystal nano-resonators, Opt. Express, 15, 17254, 10.1364/OE.15.017254

Tang, 2009, Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping, Opt. Express, 17, 1346, 10.1364/OE.17.001346

Painter, 1999, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, J. Opt. Soc. Am. B, 16, 275, 10.1364/JOSAB.16.000275

Akahane, 2003, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, 425, 944, 10.1038/nature02063

Song, 2005, Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Mater, 4, 207, 10.1038/nmat1320

Lu, 2010, Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection, Appl. Phys. Lett, 96, 213702, 10.1063/1.3436550

Almeida, 2004, Guiding and confining light in void nanostructure, Opt. Lett, 29, 1209, 10.1364/OL.29.001209

Hochberg, 2005, High-Q optical resonators in silicon-on-insulator-based slot waveguides, Appl. Phys. Lett, 86, 081101, 10.1063/1.1871360

Gylfason, 2010, On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array, Opt. Express, 18, 3226, 10.1364/OE.18.003226

Lee, 2010, Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator, Opt. Express, 18, 20638, 10.1364/OE.18.020638

Skivesen, 2007, Photonic-crystal waveguide biosensor, Opt. Express, 15, 3169, 10.1364/OE.15.003169

Yariv, A., and Yeh, P. (2007). Photonics, Oxford University Press.

Loncar, 2003, Photonic crystal laser sources for chemical detection, Appl. Phys. Lett, 82, 4648, 10.1063/1.1586781

Kita, 2010, Nanoslot laser, Appl. Phys. Lett, 97, 161108, 10.1063/1.3505139

Rahachou, 2006, Waveguiding properties of surface states in photonic crystals, J. Opt. Soc. Am. B, 23, 1679, 10.1364/JOSAB.23.001679

Yeh, 1977, Electromagnetic propagation in periodic stratified media. I. General theory, J. Opt. Soc. Am, 67, 423, 10.1364/JOSA.67.000423

Vlasov, 2004, Observation of surface states in a truncated photoniccrystal slab, Opt. Lett, 29, 2175, 10.1364/OL.29.002175

Meade, 1991, Electromagnetic Bloch waves at the surface of a photonic crystal, Phys. Rev. B, 44, 10961, 10.1103/PhysRevB.44.10961

Takahashi, 2006, Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques, Appl. Phys. Lett, 89, 123106, 10.1063/1.2355463