Optical Hall effect measurement of coupled phonon mode - Landau Level transitions in epitaxial Graphene on silicon carbide
Tóm tắt
We report on mid-infrared (600 – 4000 cm-1), refection-type optical-Hall effect measurements on epitaxial graphene grown on C-face silicon carbide and present Landau-level transition features detected at 1.5 K as a function of magnetic field up to 8 Tesla. The Landau-level transitions are detected in reflection configuration at oblique incidence for wavenumbers below, across and above the silicon carbide reststrahlen range. Small Landau-level transition features are enhanced across the silicon carbide reststrahlen range due to surface-guided wave coupling with the electronic Landau-level transitions in the graphene layer. We analyze the spectral and magnetic-field dependencies of the coupled resonances, and compare our findings with previously reported Landau-level transitions measured in transmission configuration [4,5,6]. Additional features resemble transitions previously assigned to bilayer inclusion [21], as well as graphite [15]. We discuss a model description to account for the electromagnetic polarizability of the graphene layers, and which is sufficient for quantitative model calculation of the optical-Hall effect data.
Tài liệu tham khảo
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
Y. Zheng, and T. Ando, Phys. Rev. B 65, 245420 (2002).
V. P. Gusynin, and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).
M. Orlita, C. Faugeras, J. Borysiuk, J.M. Baranowski, W. Strupiński, M. Sprinkle, C. Berger, W.A. de Heer, D. M. Basko, G. Martinez, and M. Potemski, Phys. Rev. B 83, 125302 (2011).
M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).
M. Orlita, C. Faugeras, J. M. Schneider, G. Martinez, D.K. Maude, and M. Potemski, Phys. Rev. Lett. 102, 166401 (2009).
M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W.A. de Heer, Sol. Stat. Comm. 143, 123 (2007).
T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, phys. stat. sol.(a) 205, 779 (2008).
T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, Rev. Sci. Instrum. 77, 063902 (2006).
J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward, J. M. McCrate, S. A. Kitt, P. M. Campbell, G. G. Jernigan, J. C. Culbertson, C. R. Eddy Jr., and D. Gaskill, Appl. Phys. Lett. 95, 122102 (2009).
J. L. Tedesco, G. G. Jernigan, J. C. Culbertson, J. K. Hite, Y. Yang, K. M. Daniels, R. L. Myers-Ward, C. R. Eddy Jr., J. A. Robinson, K. A. Trumbull, M. T. Wetherington, P. M. Campbell, and D. K. Gaskill, Appl. Phys. Lett. 96, 222103 (2010).
H. Fujiwara, “Spectroscopic Ellipsometry Principles and Applications”, (Maruzen Co. Ltd, Tokyo 2007)
P. Kühne, T. Hofmann, C. M. Herzinger, and M. Schubert, Rev. Sci. Instrum. to be published
T. Tiwald, E. Thomas, J. A. Woollam, S. Zollner, J. Christiansen, R. B. Gregory, T. Wetteroth, S. R. Wilson, and A. R. Powell, Phys. Rev. B 60, 11464 (1999).
P. Drude, Annalen der Physik und Chemie 271, 508 (1888).
T. Hofmann, T. Chavdarov, V. Darakchieva, H. Lu, W. J. Schaff, and M. Schubert, phys. stat. sol.(c) 3, 1854 (2006).
T. Hofmann, C.M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, phys. stat. sol. (a) 205, 779 (2008) and references therein.
T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, Appl. Phys. Lett. 98, 041906 (2011).
M. Schubert, T. Hofmann, and J. Šik, Phys. Rev. B 71, 035324 (2005).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666–669 (2004).
M. Koshino, and T. Ando, Phys. Rev. B 77, 115313 (2008).
M. Schubert, Ann. Phys. 15, 480 (2006).
P. Kühne, T. Hofmann, C.M. Herzinger, and M. Schubert, Thin Solid Films 519, 2613 (2011).
M. Schubert, T. Hofmann, and J. Sik, Phys. Rev. B 71, 035324 (2005).