Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Almazroa, R. Burman, K. Raahemifar, and V. Lakshminarayanan, “Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey,” J. Ophthalmol. 2015, (2015).
H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” British J. Ophthalmol. 90 (3), 262–267 (2006).
M. U. Akram, A. Tariq, S. Khalid, M. Y. Javed, S. Abbas, and U. U. Yasin, “Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques,” Australasian Phys. Eng. Sci. Med. 38 (4), 643–655 (2015).
F. Fumero, S. Alayón, J. Sanchez, J. Sigut, and M. Gonzalez-Hernandez, “Rim-one: An open retinal image database for optic nerve evaluation,” in Proc. 24th IEEE Int. Symp. on Computer-Based Medical Systems (CBMS) (Bristol, 2011), pp. 1–6.
G. Lim, Y. Cheng, W. Hsu, and M. L. Lee, “Integrated optic disc and cup segmentation with deep learning,” in Proc. 27th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI) (Vietri sur Mare, 2015), pp. 162–169.
A. Bastawrous, H. K. Rono, I. A. Livingstone, H. A.Weiss, S. Jordan, H. Kuper, and M. J. Burton, “Development and validation of a smartphone-based visual acuity test (peek acuity) for clinical practice and community-based fieldwork,” JAMA Ophthalmol. 133 (8), 930–937 (2015).
V. Lodhia, S. Karanja, S. Lees, and A. Bastawrous, “Acceptability, usability, and views on deployment of peek, a mobile phone mhealth intervention for eye care in Kenya: qualitative study,” JMIR mHealth uHealth 4(2) (2016).
K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, “Deep retinal image understanding,” in Proc. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (Springer, 2016), pp. 140–148.
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (Boston, MA, 2015), pp. 3431–3440.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556 (2014).
J. G. Zilly, J. M. Buhmann, and D. Mahapatra, “Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images,” in Proc. Int. Workshop on Machine Learning in Medical Imaging (Springer, 2015), pp. 136–143.
R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB (Prentice-Hall, Upper Saddle River, NJ, 2003).
H. Dŏgan and O. Akay, “Using adaboost classifiers in a hierarchical framework for classifying surface images of marble slabs,” Expert Syst. Appl. 37 (12), 8814–8821 (2010).
M. B. Salah, A. Mitiche, and I. B. Ayed, “Multiregion image segmentation by parametric kernel graph cuts,” IEEE Trans. Image Processing 20 (2), 545–557 (2011).
J. Sivaswamy, S. Krishnadas, A. Chakravarty, G. Joshi, A. S. Tabish, et al., “A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis,” JSM Biomed. Imaging Data Pap. 2(1) (2015).
J. Sivaswamy, S. Krishnadas, G. D. Joshi, M. Jain, and A. U. S. Tabish, “Drishti-gs: retinal image dataset for optic nerve head (onh) segmentation,” in Proc. 11th IEEE Int. Symp. on Biomedical Imaging (ISBI) (Beijing, 2014), pp. 53–56.
J. Zilly, J. M. Buhmann, and D. Mahapatra, “Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation,” Comput. Med. Imag. Graph. 55, 28–41 (2017).
H. Li and O. Chutatape, “Automated feature extraction in color retinal images by a model based approach,” IEEE Trans. Biomed. Eng. 51 (2), 246–254 (2004).
J. Jose and J. Kuruvilla, “Detection of red lesions and hard exudates in color fundus images,” Int. J. Eng. Comput. Sci. 3 (10), 8583–8588 (2014).
R. Szeliski, Computer Vision: Algorithms and Applications (Springer Science and Business Media, 2010).
O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).
I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of initialization and momentum in deep learning,” in Proc. Int. Conf. on Machine Learning (Atlanta, 2013).
E. J. Carmona, M. Rincón, J. García-Feijoó, and J. M. Martínez-de-la Casa, “Identification of the optic nerve head with genetic algorithms,” Artificial Intellig. Med. 43 (3), 243–259 (2008).
Theano Development Team, “Theano: A Python framework for fast computation of mathematical expressions,” arXiv 1605.02688 (May 2016).
Amazon web services. https://aws.amazon.com