Opportunities in somatostatin research: biological, chemical and therapeutic aspects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79 (1973). Describes the isolation and characterization of somatostatin as antisecretory peptide hormone.
Reichlin, S. Somatostatin (second of two parts). N. Engl. J. Med. 309, 1556–1563 (1983). References 2 and 3 comprise a major, early two-part clinical review on SRIF.
Delesque, N. et al. Sst2 somatostatin receptor expression reverses tumorigenicity of human pancreatic cancer cells. Cancer Res. 57, 956–962 (1997).
Froidevaux, S. & Eberle, A. N. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 66, 161–183 (2002).
Reubi, J. C., Perrin, M. H., Rivier, J. E. & Vale, W. High-affinity binding sites for a somatostatin-28 analog in rat brain. Life Sci. 28, 2191–2198 (1981).
Ensinck, J. W. et al. Thrittene, homologous with somatostatin-28(1–13), is a novel peptide in mammalian gut and circulation. Endocrinology 143, 2599–2609 (2002).
De Lecea, L. et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381, 242–245 (1996). Reports the discovery of cortistatin.
Spier, A. D. & De Lecea, L. Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. Brain Res. Rev. 33, 228–241 (2000).
Dalm, V. A. et al. Cortistatin rather than somatostatin as a potential endogenous ligand for somatostatin receptors in the human immune system. J. Clin. Endocrinol. Metab. 88, 270–276 (2003). This paper discusses the role of cortistatin in the immune system.
Yamada, Y. et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract and kidney. Proc. Natl Acad. Sci. USA 89, 251–255 (1992). Groundbreaking work on SRIF receptor subtype discovery.
Weckbecker, G., Raulf, F., Stolz, B. & Bruns, C. Somatostatin analogs for diagnosis and treatment of cancer. Pharmac. Ther. 60, 245–264 (1993).
Patel, Y. C. & Wheatley, T. In vivo and in vitro plasma disappearance and metabolism of somatostatin-28 and somatostatin-14 in the rat. Endocrinology 112, 220–225 (1983).
Siler, T. M. et al. Inhibition of growth hormone release in humans by somatostatin. J. Clin. Endocrinol. Metab. 37, 632–634 (1973).
Coy, D. H., Coy, E. J., Arimura, A. & Schally, A. V. Solid phase synthesis of growth hormone-release inhibiting factor. Biochem. Biophys. Res. Commun. 54, 1267–1273 (1973).
Rivier, J., Brown, M., Rivier, C., Ling, N. & Vale, W. in Peptides 1976 (ed. Loffet, A.) 427–521 (Editions de l'Universites, Bruxelles, 1976).
Gottesman, I. S., Mandarino, L. J. & Gerich, J. E. in Special Topics in Endocrinology and Metabolism Vol. 4 (eds Cohen, M. & Foa, P.) 177–243 (Alan R. Liss, New York, 1982). An early review on SRIF analogues.
Bauer, W. et al. SMS 201-995: a very potent and selective analogue of somatostatin with prolonged action. Life Sci. 31, 1134–1140 (1982). Describes the first SRIF analogue approved for clinical use.
Lamberts, S. W. J., van der Lely, A. -J., de Herder, W. W. & Hofland, L. J. Octreotide. Drug therapy. New Engl. J. Med. 334, 246–254 (1996). A comprehensive review on the clinical use of octreotide.
Pallai, P., Struthers, S., Goodman, M., Rivier, J. & Vale, W. Extended retro-inverso analogs of somatostatin. Biopolymers 22, 2523–2538 (1983).
Rohrer, S. P. et al. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282, 737–740 (1998). Reports a breakthrough in non-peptide agonists.
Crider, M. Recent advances in the development of non-peptide somatostatin receptor ligands. Mini Rev. Med. Chem. 2, 507–517 (2002).
Bruns, C., Lewis, I., Shi, V., Briner, U. & Weckbecker, G. Broad SRIF receptor binding and potent hormone lowering effects of the novel somatostatin (SRIF) SOM230. Endocrine Soc. 83rd Ann. Mtg Denver, Colorado, USA (June, 2001).
Weckbecker, G., Lewis, I., Briner, U. & Bruns, C. SOM230, A new somatostatin peptidomimetic with unique binding and endocrine profile. Proc. 5th Eur. Congr. Endocrinol. Turin, Italy (June, 2001).
Lewis, I. et al. Rational approach to stable, universal somatostatin analogues with superior therapeutic potential. Peptides: The Wave of the Future. Proc. 17th Am./2nd Int. Peptide Symp. (eds Houghten, R. & Lebl, M.) 718–720 (2001).
Weckbecker, G., Briner, U., Lewis, I. & Bruns, C. SOM230: a new somatostatin peptidomimetic with potent inhibitory effects on the growth hormone/insulin-like growth factor-I axis in rats, primates, and dogs. Endocrinology 143, 4123–4130 (2002).
Bruns, C., Lewis, I., Briner, U., Meno-Tetang, G. & Weckbecker, G. SOM230: a novel somatostatin peptidomimetic with a broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol. 146, 707–716 (2002).
Lewis, I. et al. A novel somatostatin mimic with broad somatotropin release inhibitory factor receptor binding and superior therapeutic potential. J. Med. Chem. 46, 2334–2344 (2003). References 24–29 describe the in vivo studies, binding and functional studies, and the synthesis and medicinal chemistry of SOM230.
Patel, Y. C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157–198 (1999). A comprehensive review on somatostatin receptors.
Meyerhof, W. The elucidation of somatostatin receptor functions: a current view. Rev. Physiol. Biochem. Pharmacol. 133, 55–108 (1998).
Sellers, L. A., Alderton, F., Carruthers, A. M., Schindler, M. & Humphrey, P. P. A. Receptor isoforms mediate opposing proliferative effects through Gβγ-activated p38 or Akt pathways. Mol. Cell. Biol. 20, 5974–5985 (2000).
Rosskopf, D. et al. Signal transduction of somatostatin in human B lymphoblasts. Am. J. Physiol. Cell Physiol. 284, C179–C190 (2003). Comprehensive work on somatostatin signalling.
Hoyer, D. et al. in The IUPHAR Compendium of Receptor Characterisation and Classification (IUPHAR Committee on Receptor Nomenclature and Drug Classification) 354–356 (IUPHAR Media, London, 2000). This section of the compendium presents the IUPHAR-based SRIF receptor nomenclature.
Hannon, J. P. et al. Drug design at peptide receptors: somatostatin receptor ligands. J. Mol. Neurosci. 18, 15–27 (2002).
Bruns, C. et al. Molecular pharmacology of somatostatin-receptor subtypes. Ann. NY Acad. Sci. 733, 138–146 (1994).
Fukusumi, S. et al. Identification and characterization of a novel human cortistatin-like peptide. Biochem. Biophys. Res. Commun. 232, 157–163 (1997).
Siehler, S., Seuwen, K. & Hoyer, D. [125I]Tyr10-cortistatin14 labels all five somatostatin receptors. Naunyn Schmiedebergs Arch. Pharmacol. 357, 483–489 (1998).
Broglio, F. et al. Endocrine activities of cortistatin-14 and its interaction with GHRH and ghrelin in humans. J. Clin. Endocrinol. Metab. 87, 3783–3790 (2002).
Siehler, S., Seuwen, K. & Hoyer, D. Characterization of human recombinant somatostatin receptors. 1. Radioligand binding studies. Naunyn Schmiedebergs Arch. Pharmacol. 360, 488–499 (1999).
Bruns, C. et al. Binding properties of somatostatin receptor subtypes. Metab. Clin. Exp. 44, 17–20 (1996).
Florio, T. et al. Somatostatin inhibits PC C13 thyroid cell proliferation through the modulation of phosphotyrosine phosphatase activity—impairment of the somatostatinergic effects by stable expression of EIA viral oncogene. J. Biol. Chem. 271, 6129–6136 (1996).
Akbar, M. et al. Phospholipase C activation and Ca2+ mobilization by cloned human somatostatin receptor subtypes 1–5 in transfected COS–7 cells. FEBS Lett. 348, 192–196 (1994).
Murthy, K. S., Coy, D. H. & Makhlouf, G. Somatostatin receptor-mediated signalling in smooth muscle. J. Biol. Chem. 271, 23458–23463 (1996).
Cheng, H., Yibchok-anun, S., Coy, D. H. & Hsu, W. H. SSTR2 mediates the somatostatin-induced increase in intracellular Ca2+ concentration and insulin secretion in the presence of arginine vasopressin in clonal β-cell HIT-T15. Life Sci. 71, 927–936 (2002).
Gromada, J., Hoy, M., Buschard, K., Salehi, A. & Rorsman P. Somatostatin inhibits exocytosis in rat pancreatic a-cells by Gi2-dependent activation of calcineurin and depriming of secretory granules. J. Physiol. 535, 519–532 (2001).
Chisholm, C. & Greenberg, G. R. Somatostatin-28 regulates GLP-1 secretion via somatostatin receptor subtype 5 in rat intestinal cultures. Am. J. Physiol. Endocrinol. Metab. 283, E311–E317 (2002).
Zatelli, M. C. et al. Somatostatin receptor subtype 1-selective activation reduces cell growth and calcitonin secretion in a human medullary thyroid carcinoma cell line. Biochem. Biophys. Res. Commun. 297, 828–834 (2002).
Cervia, D., Petrucci, C., Bluet-Pajot, M. T., Epelbaum, J. & Bagnoli, P. Inhibitory control of growth hormone secretion by somatostatin in rat pituitary GC cells: sst2 but not sst1 receptors are coupled to inhibition of single-cell intracellular free calcium concentrations. Neuroendocrinology 76, 99–110 (2002).
Strowski, M. Z. et al. Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinology 75, 339–346 (2002).
Strowski, M. Z. et al. Somatostatin receptor subtype 5 regulates insulin secretion and glucose homeostasis. Mol. Endocrinol. 17, 93–106 (2003).
Cejvan, K., Coy, D. H. & Efendic, S. Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes 52, 1176–1181 (2003).
Barkan, A. L. et al. Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels. J. Clin. Endocrinol. Metab. 88, 2180–2184 (2003).
Tannenbaum, G. S., Epelbaum, J. & Bowers C. Y. Interrelationship between the novel peptide ghrelin and somatostatin/growth hormone-releasing hormone in regulation of pulsatile growth hormone secretion. Endocrinology 144, 967–974 (2003).
Dimaraki, E. V., Jaffe, C. A., Bowers, C. Y., Marbach, P. & Barkan, A. L. Pulsatile and nocturnal growth hormone secretions in men do not require periodic declines of somatostatin. Am. J. Physiol. Endocrinol. Metabol. 285, C1205–C1204 (2003).
Gong, A. Y. et al. Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. Am. J. Physiol. Cell Physiol. 284, 1205–1214 (2003).
Renstrom, E., Ding, W. G., Bokvist, K. & Rorsman, P. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting β-cells by activation of calcineurin. Neuron 17, 513–522 (1996).
Mascardo, R. N., Barton, R. W. & Sherline, P. Somatostatin has an antiproliferative effect on concanavalin-activated rat thymocytes. Clin. Immunol. Immunopathol. 33, 131–138 (1984). The first demonstration of antiproliferative effects of somatostatin.
Weckbecker, G., Raulf, F., Tolcsvai, L. & Bruns, C. Potentiation of the antiproliferative effects of anticancer drugs by octreotide in vitro and in vivo. Digestion 57, 22–28 (1996).
Srikant, C. B. Cell cycle dependent induction of apoptosis by somatostatin analog SMS201-995 in AtT-20 mouse pituitary tumor cells. Biochem. Biophys. Res. Commun. 209, 400–407 (1995) A report of SRIF analogue-induced apoptosis.
Liu, D. et al. Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J. Biol. Chem. 275, 9244–9250 (2000).
Teijeiro, R. et al. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell. Physiol. Biochem. 12, 31–38 (2002).
Danila, D. C. et al. Somatostatin receptor-specific analogs: effects on cell proliferation and growth hormone secretion in human somatotroph tumors. J. Clin. Endocrinol. Metab. 86, 2976–2981 (2001).
Lamberts, S. W. J., van der Lely, A. J. & Hofland, L. J. New somatostatin analogs: will they fulfil old promises? Eur. J. Endocrinol. 146, 701–705 (2002).
Tahiri-Jouti, N. et al. Characterization of a membrane tyrosine phosphatase in AR42J cells: regulation by somatostatin. Am. J. Physiol. 262, G1007–G1014 (1992).
Weckbecker, G., Stolz, B., Susini, C. & Bruns, C. in Octreotide: the Next Decade (ed. Lamberts, S. W. J.) 339–352 (BioScientifica, Bristol, 1999).
Oomen, S. P. M. A., Hofland, L. J., Lamberts, S. W. J., Lowenberg, B. & Touw, I. P. Internalization-defective mutants of somatostatin receptor subtype 2 exert normal signaling functions in hematopoietic cells. FEBS Lett. 503, 163–167 (2001).
Sharma, K. & Srikant, C. B. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int. J. Cancer 76, 259–266 (1998).
Ferone, D. et al. Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes. Am. J. Physiol. Endocrinol. Metab. 283, E1056–E1066 (2002).
Lattuada, D., Casnici, C., Venuto, A. & Marelli, O. The apoptotic effect of somatostatin analogue SMS 201-995 on human lymphocytes. J. Neuroimmunol. 133, 211–216 (2002).
Florio, T. et al. Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 144, 1574–1584 (2003).
Reyl, F. J. & Lewin, M. J. M. Intracellular receptor for somatostatin in gastric mucosal cells: decomposition and reconstitution of somatostatin-stimulated phosphoprotein phosphatases. Proc. Natl Acad. Sci. USA 79, 978–982 (1982). Early demonstration of SRIF-modulated protein phosphatase.
Srikant, C. B. & Shen, S. H. Octapeptide somatostatin analog SMS 201-995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast cancer adenocarcinoma cells. Endocrinology 137, 3461–3468 (1996).
Florio, T. et al. The activation of the phosphotyrosine phosphatase-η (r-PTPη) is responsible for the somatostatin inhibition of PC CI3 thyroid cell proliferation. Mol. Endocrinol. 15, 1838–1852 (2001).
Hortala, M. et al. Inhibitory role of the somatostatin receptor SST2 on the intracrine-regulated cell proliferation induced by the 210-amino acid fibroblast growth factor-2 isoform: implication of JAK2. J. Biol. Chem. 278, 20574–20581 (2003).
Cordelier, P. et al. Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proc. Natl Acad. Sci. USA 94, 9343–9348 (1997).
Weckbecker, G., Raulf, F., Bodmer, D. & Bruns, C. Indirect antiproliferative effect of the somatostatin analog octreotide on MIA PaCa-2 human pancreatic carcinoma in nude mice. Yale J. Biol. Med. 70, 549–554 (1997).
Weckbecker, G., Tolcsvai, L., Stolz, B., Pollak, M. & Bruns, C. Somatostatin analog octreotide enhances the antineoplastic effects of tamoxifen and ovariectomy on 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinomas. Cancer Res. 54, 6334–6337 (1994).
Sun, Q. -Q., Huguenard, J. R. & Prince D. A. Somatostatin inhibits thalamic network oscillations in vitro: actions on the GABAergic neurons of the reticular nucleus. J. Neurosci. 22, 5374–5386 (2002).
Reubi, J. C. & Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging 30, 781–793 (2003).
Hofland, L. J. & Lamberts, S. W. J. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocrine Rev. 24, 28–47 (2003). Comprehensive review on SRIF receptor internalization.
Reubi, J. C., Waser, B., Schaer, J. -C. & Laissue, J. A. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. Mol. Imaging 28, 836–846 (2001).
Kulaksiz, H. et al. Identification of somatostatin receptor subtypes 1,2A, 3, and 5 in neuroendocrine tumors with subtype specific antibodies. Gut 50, 52–60 (2002).
Csaba, Z., Bernard, V., Helboe, L., Bluet-Pajot, M. T. & Bloch, B. In vivo internalization of the somatostatin sst2A receptor in rat brain: evidence for translocation of cell-surface receptors into the endosomal recycling pathway. Mol. Cell. Neuroscience 17, 646–661 (2001).
Krenning, E. P. et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 20, 716–731 (1993). The first major clinical experience with SRIF receptor scintigraphy.
De Jong, M. et al. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0,Tyr3]octreotide: peptides for somatostatin receptor–targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun. 19, 283–288 (1998).
Schally, A. V. & Nagy A. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors. Eur. J. Endocrinol. 141, 1–14 (1999).
Froidevaux, S. et al. Differential regulation of somatostatin receptor type 2 (sst 2) expression in AR4-2J tumor cells implanted into mice during octreotide treatment. Cancer Res. 59, 3652–3657 (1999).
Arnold, R., Simon, B. & Wied, M. Treatment of neuroendocrine GEP tumours with somatostatin analogues: a review. Digestion 62, 84–91 (2000).
George, S. R., O'Dowd, B. F. & Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Rev. Drug Discov. 2, 808–820 (2002).
Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000). Describes the hetero-oligomerization of SRIF receptors.
Rocheville, M. et al. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers J. Biol. Chem. 275, 7862–7869 (2000).
Pfeiffer, M. et al. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J. Biol. Chem. 276, 14027–14036 (2001).
Pfeiffer, M. et al. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem. 277, 19762–19772 (2002).
Selmer, I. -S., Schindler, M., Allen, J. P., Humphrey, P. P. A. & Emson, P. C. Advances in understanding neuronal somatostatin receptors. Regul. Pept. 90, 1–18 (2000).
Murphy, W. A., Lance, V. A., Moreau, S., Moreau, J. & Coy, D. H. Inhibition of rat prostate tumor growth by an octapeptide analog of somatostatin. Life Sci. 40, 2515–2522 (1987).
Caron, P., Morange-Ramos, I., Cogne, M. & Jaquet, P. Three year follow-up of acromegalic patients treated with intramuscular slow-release lanreotide. J. Clin. Endocrinol. Metab. 82, 18–22 (1997).
Veber, D. F. et al. A potent cyclic hexapeptide analogue of somatostatin. Nature 292, 55–58 (1981). Reports a SRIF analogue structure with further reduced size.
Van der Hoek, J. et al. A single dose comparison of the acute effects between the new somatostatin analog SOM230 and octreotide in acromegalic patients. J. Clin. Endocrinol. Metab. 88 (in the press). Demonstration of efficacy of SOM230 in acromegalic patients.
Raynor, K. et al. Cloned somatostatin receptors: identification of subtype-selective peptides and demonstration of high affinity binding of linear peptides. Mol. Pharmacol. 43, 838–844 (1993).
Shimon, I. et al. Somatostatin receptor subtype specificity in human fetal pituitary cultures, differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J. Clin. Invest. 99, 789–798 (1997). Describes the role of sst 5 in controlling growth hormone release.
Reubi, J. C., Eisenwiener, K. -P., Rink, H., Waser, B. & Mäcke, H. R. A new peptidic somatostatin agonist with high affinity to all five somatostatin receptors. Eur. J. Pharmacol. 456, 45–49 (2002). Report on a novel universal SRIF receptor ligand.
Rivier, J. E. et al. Potent somatostatin undecapeptide agonists selective for somatostatin receptor 1 (sst1). J. Med. Chem. 44, 2238–2246 (2001).
Rajeswaran, W. G., Hocart, S. J., Murphy, W. A., Taylor, J. E. & Coy, D. H. N-methyl scan of somatostatin octapeptide agonists produces interesting effects on receptor subtype specificity. J. Med. Chem. 44, 1416–1421 (2001).
Afargan, M. et al. Novel long-acting somatostatin analog with endocrine selectivity: potent suppression of growth hormone but not of insulin. Endocrinology 142, 477–486 (2001). Reports the discovery of PTR3173.
Gazal, S. et al. Human somatostatin receptor specificity of backbone-cyclic analogues containing novel sulfur building units. J. Med. Chem. 45, 1665–1671 (2002).
Gademann, K., Kimmerlin, T., Hoyer, D. & Seebach, D. Peptide folding induces high and selective affinity of a linear and small β-peptide to the human somatostatin receptor 4. J. Med. Chem. 44, 2460–2468 (2001). Describes the discovery of a β-peptide SRIF analogue.
Nunn, C. et al. β2/β3- and α/β3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors. Naunyn Schmiedeberg's Arch. Pharmacol. 367, 95–103 (2003).
Seebach, D., Schaeffer, L., Brenner, M. & Hoyer, D. Design and synthesis of γ-dipeptide derivatives with submicromolar affinities for human somatostatin receptors. Angew. Chem. Int. Ed. Engl. 42, 776–778 (2003). Reports the discovery of γ-dipeptide SRIF mimics.
Bass, R. T. et al. Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol. 50, 709–715 (1996). First SRIF peptide antagonist published.
Feniuk, W., Jarvie, E., Luo, J. & Humphrey, P. P. A. Selective somatostatin sst2 receptor blockade with the novel cyclic octapeptide, CYN-154806. Neuropharmacology 39, 1443–1450 (2000).
Hocart, S. J., Jain, R., Murphy, W. A., Taylor, J. E. & Coy, D. H. Highly potent cyclic disulfide antagonists of somatostatin. J. Med. Chem. 42, 1863–1871 (1999).
Reubi, J. C. et al. SST3-selective potent peptidic somatostatin receptor antagonists. Proc. Natl Acad. Sci. USA 97, 13973–13978 (2000).
Keri, G. et al. Novel somatostatin analogs with tyrosine kinase inhibitory and antitumor activity. Biochem. Biophys. Res. Commun. 191, 681–687 (1993).
Pinter, E. et al. Pharmacological characterization of the somatostatin analogue TT-232: effects on neurogenic and non-neurogenic inflammation and neuropathic hyperalgesia. Naunyn Schmiedebergs Arch. Pharmacol. 366, 142–150 (2002).
Li, H., Jiang, X., Howell, S. B. & Goodman, M. Synthesis, conformational analysis and bioactivity of Lan-7, a lanthionine analog of TT-232. J. Pept. Sci. 6, 26–35 (2000).
Yang, L. Non-peptide somatostatin receptor ligands. Ann. Rep. Med. Chem. 34, 209–218 (1999).
Rohrer, S. P. & Schaeffer, J. M. Identification and characterization of subtype selective somatostatin receptor agonists. J. Physiol. 94, 211–215 (2000).
Pasternak, A. et al. Potent, orally bioavailable somatostatin agonists: good absorption achieved by urea backbone cyclization. Bioorg. Med. Chem. Lett. 9, 491–496 (1999). This paper describes orally available SRIF mimetics.
Hirschmann, R. et al. Nonpeptidal peptidomimetics with β-D-glucose scaffolding. A partial somatostatin agonist bearing a close structural relationship to a potent, selective substance P antagonist. J. Am. Chem. Soc. 114, 9217–9218 (1992). Early work on non-peptide SRIF analogues.
Hirschmann, R. et al. Modulation of receptor and receptor subtype affinities using diastereomeric and enantiomeric monosaccharide scaffolds as a means to structural and biological diversity. A new route to ether synthesis. J. Med. Chem. 41, 1382–1391 (1998).
Prasad, V. et al. Effects of heterocyclic aromatic substituents on binding affinities at two distinct sites of somatostatin receptors. Correlation with the electrostatic potential of the substituents. J. Med. Chem. 46, 1858–1869 (2003).
Ankersen, M. et al. Discovery of a novel non-peptide somatostatin agonist with SST4 selectivity. J. Am. Chem. Soc. 120, 1368–1373 (1998). Discovery of a selective non-peptide SRIF agonist.
Souers, A. J. et al. Optimization of a somatostatin mimetic via constrained amino acid and backbone incorporation. Bioorg. Med. Chem. Lett. 10, 2731–2733 (2000). Discovery of a thioether SRIF mimic.
Hoyer, D. et al. NVP-SRA880, a somatostatin sst1 receptor antagonist promotes social interactions, reduces aggressive behaviour and stimulates learning. The Pharmacologist 44 (Suppl. 1), A254 (2002). First SRIF antagonist tested in clinical trials.
Poitout, L. et al. Identification of potent non-peptide somatostatin antagonists with sst3 selectivity. J. Med. Chem. 44, 2990–3000 (2001).
Bakker, W. H. et al. [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci. 49, 1583–1591 (1991). Discovery of radiolabelled octreotide.
Stolz, B. et al. The somatostatin receptor-targeted radiotherapeutic [90Y-DOTA-D-Phe1, Tyr3](octreotide (90Y-SMT 487) eradicates experimental rat pancreatic CA 20948 tumours. Eur. J. Nucl. Med. 25, 668–674 (1998). Discovery of the first SRIF analogue radiotherapeutic, SMT487, which is presently being tested clinically.
Virgolini, I. et al. Experience with indium-111 and yttrium-90-labeled somatostatin analogs. Curr. Pharm. Des. 8, 1781–1807 (2002). A comprehensive review of radiolabelled SRIF analogues.
De Jong, M. et al. Somatostatin receptor-targeted radiotherapy of tumors: preclinical and clinical findings. Sem. Nucl. Med. 32, 133–140 (2002).
Reubi, J. C. et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nuc. Med. 27, 273–282 (2000).
Jamar, F. et al. 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487) a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur. J. Nucl. Med. Mol. Imaging 30, 510–518 (2003).
Bolli, G. B., Gottesman, I. S. & Gerich, J. E. Preliminary experience on treatment of insulin-dependent diabetes mellitus with a long-acting somatostatin analogue (L363,586). Hormone Res. 29, 95–98 (1988).
Gerich, J. E. Lorenzi, M., Schneider, V. & Forsham, P. H. Effect of somatostatin on plasma glucose and insulin responses to glucagon and tolbutamide in man. J. Clin. Endocrinol. Metab. 39, 1057–1060 (1974).
Rizza, R. et al. Somatostatin does not cause sustained fasting hyperglycemia in man. Horm. Metab. Res. 11, 643–644 (1979).
Campbell, P. J., Bolli, G. B. & Gerich, J. E. Prevention of the Dawn phenomenon (early morning hyperglycemia) in insulin-dependent diabetes mellitus by bedtime intranasal administration of a long-acting somatostatin analog. Metab. 37, 34–37 (1988).
Boehm, B. O. The therapeutic potential of somatostatin receptor ligands in the treatment of obesity and diabetes. Exp. Opin. Investig. Drugs 12, 1501–1509 (2003).
Kayasseh, L., Gyr, K., Keller, U. & Stalder, G. A. Somatostatin in peptic ulcer bleeding. Lancet 2, 861 (1980).
Usadel, K. H., Leuschner, U. & Uberla, K. K. Treatment of acute pancreatitis with somatostatin: a multicenter double blind study. N. Engl. J. Med. 303, 999–1000 (1980).
Szabo, S. & Usadel, K. H. Cytoprotection — organoprotection by somatostatin: gastric and hepatic lesions. Experientia 38, 254–256 (1982).
Avgerinos, A., Nevens, F., Raptis, S. & Fevery, J. Early administration of somatostatin and efficacy of sclerotherapy in acute oesophageal variceal bleeds: the European Acute Bleeding Oesophageal Variceal Episodes (ABOVE) randomised trial. Lancet 350, 1495–1499 (1997).
Lancranjan, I. & Atkinson, A. B. Results of a European multicentre study with Sandostatin LAR in acromegalic patients. Sandostatin LAR Group. Pituitary 1, 105–114 (1999).
Papotti, M. et al. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 440, 461–475 (2002).
Karashima, T., Cai, R. Z. & Schally, A. V. Effects of highly potent octapeptide analogs of somatostatin on growth hormone, insulin and glucagon release. Life Sci. 41, 1011–1019 (1987).
Newman, C. B. et al. Safety and efficacy of longterm octreotide therapy of acromegaly: results of a multicenter trial in 103 patients. A clinical research center study. J. Clin. Endocrinol. Metabol. 80, 2768–2775 (1995).
Lamberts, S. W. J., Krenning, E. P. & Reubi, J. C. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocrine Rev. 12, 450–482 (1991). A comprehensive review of somatostatin in cancer.
Jensen, R. T. Carcinoid and pancreatic endocrine tumors: recent advances in molecular pathogenesis, localization, and treatment. Curr. Opin. Oncol. 12, 368–377 (2000).
'Vance, M. L. Medical treatment of functional pituitary tumors. Neurosurgery Clin. N. Am. 14, 81–87 (2003).
De Herder, W. & Lamberts, S. Somatostatin analog therapy in treatment of gastrointestinal disorders and tumors. Endocrine 20, 285–290 (2003).
Bevan, J. S. et al. Primary medical therapy for acromegaly: an open, prospective, multicenter study of the effects of subcutaneous and intramuscular slow-release octreotide on growth hormone, insulin-like growth factor-1, and tumor size. J. Clin. Endocrinol. Metab. 87, 4554–4563 (2002). Demonstration of the utility of octreotide as primary therapy of acromegaly.
Hofland, L. J. et al. The novel somatostatin analog SOM230 inhibits ACTH release by cultured human corticotroph tumors. Endocrine Soc. Mtg AP2-499 (June, 2003).
Schally, A. Oncological applications of somatostatin analogues. Cancer Res. 48, 6977–6985 (1988).
Woltering, E. A. et al. Somatostatin analogues inhibit angiogenesis in the chick chorioallantoic membrane. J. Surg. Res. 50, 245–251 (1991).
Barrie, R. et al. Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J. Surgical Res. 55, 446–450 (1993).
Hejna, M., Schmidinger, M. & Raderer, M. The clinical role of somatostatin analogues as antineoplastic agents: much ado about nothing? Ann. Oncol. 13, 653–668 (2002). A comprehensive clinical review.
Kouroumalis, E. et al. Treatment of hepatocellular carcinoma with octreotide: a randomised controlled study. Gut 42, 442–447 (1998).
Yuen, M. F. et al. A randomized placebo-controlled study of long-acting octreotide for the treatment of advanced hepatocellular carcinoma. Hepatology 36, 687–691 (2002).
Adams, R. L., Adams, I. P., Zhong, W. & Atkin, S. L. Inhibition of endothelial proliferation by the new somatostatin analog, SOM230, and expression of somatostatin receptors in proliferating and quiescent endothelium. Endocrine Soc. Mtg AP3-371 (June, 2003).
Szende, B., Horvath, A., Bokonyi, G. & Keri, G. Effect of a novel somatostatin analogue combined with cytotoxic drugs on human tumour xenografts and metastasis of B16 melanoma. Brit. J. Cancer 88, 132–136 (2003).
Guillermet, J. et al. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc. Natl Acad. Sci. USA 100, 155–160 (2003).
Stolz, B. et al. Somatostatin analogues for somatostatin-receptor-mediated radiotherapy of cancer. Digestion 57 (Suppl. 1), 17–21 (1996).
Van Hagen, P. M. et al. Somatostatin analogue scintigraphy of malignant lymphomas. Br. J. Haematol. 83, 75–79 (1993).
Reubi, J. C., Laissue, J., Krenning, E. & Lamberts, S. W. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications. J. Steroid Biochem. Mol. Biol. 43, 27–35 (1992). Early work on SRIF receptor distribution.
Van Eijck, C. H. et al. Somatostatin-receptor scintigraphy in primary breast cancer. Lancet 343, 640–643 (1994).
Jensen, R. T., Gibril, F. & Termanini, B. Definition of the role of somatostatin receptor scintigraphy in gastrointestinal neuroendocrine tumor localization. Yale J. Biol. Med. 70, 481–500 (1997).
Kwekkeboom, D., Krenning, E. P. & deJong, M. Peptide receptor imaging and therapy. J. Nucl. Med. 41, 1704–1713 (2000).
Virgolini, I. et al. New trends in peptide receptor radioligands. J. Nucl. Med. 45, 153–159 (2001).
Virgolini, I., Britton, K., Buscombe, J., Moncayo, R., Paganelli, G. & Riva, P. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Seminars Nucl. Med. 32, 148–155 (2002).
Paganelli, G. et al. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide. Eur. J. Nucl. Med. 28, 426–434 (2001).
Weiner, R. E. & Thakur, M. L. Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl. Radiat. Isot. 57, 749–763 (2002).
Krassas, G. E., Doumas, A., Kaltsas, T., Halkias, A. & Pontikides, N. Somatostatin receptor scintigraphy before and after treatment with somatostatin analogues in patients with thyroid eye disease. Thyroid 9, 47–52 (1999).
Colao, A. et al. Orbital scintigraphy with [111]In-diethylenetriamine pentaacetic acid-D-Phe1]-octreotide predicts the clinical response to corticosteroid therapy in patients with Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 83, 3790–3794 (1998).
Krassas, G. E., Pontikides, N., Doukidis, D., Heufelder, G. & Heufelder, A. E. Serum levels of tumor necrosis factor-α, soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, and soluble interleukin-1 receptor antagonist in patients with thyroid eye disease undergoing treatment with somatostatin analogues. Thyroid 11, 1115–1122 (2001).
Gabriel, M., Decristoforo, C. & Moncayo, R. Somatostatin receptor scintigraphy using Tc-99m-EDDA/HYNIC–TOC in Graves' disease. Eur. J. Nucl. Med. Mol. Imaging. 29, 1267 (2002).
Pasquali, D. et al. Somatostatin receptor genes are expressed in lymphocytes from retroorbital tissues in Graves' disease. J. Clin. Endocrinol. Metab. 87, 5125–5129 (2002).
Grant, M. B., Caballero, S. & Millard, W. J. Inhibition of IGF-I and β-FGF stimulated growth of human retinal endothelial cells by the somatostatin analog, octreotide, a potential treatment for ocular neovascularization. Regul. Pept. 48, 267–278 (1993).
Grant, M. B. & Caballero, S. Somatostatin analogues as drug therapies for retinopathies. Drugs Today 38, 783–791 (2002).
Sönksen, P. H., Russell-Jones, D. & Jones, R. H. Growth hormone and diabetes mellitus. A review of sixty-three years of medical research and a glimpse into the future? Hormone Res. 40, 68–79 (1993).
Koller, E. A., Green, L., Gertner, J. M., Bost, M. & Malozowski, S. N. Retinal changes mimicking diabetic retinopathy in two nondiabetic, growth hormone-treated patients. J. Clin. Endocrinol. Metab. 83, 2380–2383 (1998).
Burgos, R. et al. Vitreous levels of IGF-1, IGF binding protein1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case-control study. Diabetes Care 23, 80–83 (2000).
Klisovic, D. D. et al. Somatostatin receptor gene expression in human ocular tissues: RT-PCR and immunohistochemical study. Invest. Ophthalmol. Vis. Sci. 42, 2193–2201 (2001).
Spraul, C. W., Baldysiak-Figiel, A., Lang, G. K. & Lang, G. E. Octreotide inhibits growth factor-induced bovine choriocapillary endothelial cells in vitro. Graefes Arch. Clin. Exp. Ophthalmol. 240, 227–231 (2002).
Boehm, B. O., Lang, G. K., Jehle, P. M., Feldman, B. & Lang, G. E. Octreotide reduces vitreous hemorrhage and loss of visual acuity risk in patients with high-risk proliferative diabetic retinopathy. Horm. Metab. Res. 33, 300–306 (2001). Report on the efficacy of a somatostatin analogue in diabetic retinopathy.
Flyvbjerg, A. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia 43, 1205–1223 (2000).
Orskov, H. et al. G. Octreotide and diabetes: theoretical and experimental aspects. Metabolism 41 (Suppl. 2), 66–71 (1992). Describes the role of SRIF analogues in diabetes.
Groenbaek, H., Nielsen, B., Frystyk, J., Orskov, H. & Flyvbjerg, A. Effect of octreotide on experimental diabetic renal and glomerular growth: importance of early intervention. J. Endocrinol. 147, 95–102 (1995).
Groenbaek, H. et al. Inhibitory effects of octreotide on renal and glomerular growth in early experimental diabetes in mice. J. Endocrinol. 172, 637–643 (2002).
Bak, M., Thomsen, K. & Flyvbjerg, A. Effects of the somatostatin analogue octreotide on renal function in conscious diabetic rats. Nephrol. Dialysis Transplant. 16, 2002–2007 (2001).
Epelbaum, J., Dournaud, P., Fodor, M. & Viollet, C. The neurobiology of somatostatin. Crit. Rev. Neurobiol. 8, 25–44 (1994).
Nemeroff, C. B., Youngblood, W. W., Manberg, P. J., Prange, A. J. & Kizer, J. S. Regional brain concentration of neuropeptides in Huntington's chorea and schizophrenia. Science 221, 972–975 (1983). This paper discusses the role of SRIF in CNS diseases.
Vezzani, A. & Hoyer, D. Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur. J. Neurosci. 11, 3767–3776 (1999).
Viollet, C., Videau, C. & Epelbaum, J. Somatostatin and behaviour: the need for genetically engineered models. J. Physiol. 94, 179–183 (2000).
Chrubasik, J., Meynadier, J., Scherpereel, P. & Wünsch, W. The effect of epidural somatostatin on postoperative pain. Anesth. Analg. 64, 1085–1088 (1985). Early work on the role of SRIF analogues in pain treatment.
Su, X., Burton, M. B. & Gebhart, G. F. Effects of octreotide on responses to colorectal distension in the rat. Gut 48, 676–682 (2001).
Schindler, M. et al. C. Identification of somatostatin sst2a receptor expressing neurones in central regions involved in nociception. Brain Res. 798, 25–35 (1998).
Foegh, M. L., Khirabadi, B. S., Chambers, E., Amamoo, S. & Ramwell, P. W. Inhibition of coronary artery transplant atherosclerosis in rabbits with angiopeptin, an octapeptide. Atherosclerosis 78, 229–236 (1989). Early study on the effect of a somatostatin analogue on vascular remodelling.
Weckbecker, G. et al. The somatostatin analog octreotide as potential treatment for re-stenosis and chronic rejection. Transplant. Proc. 29, 2599–2600 (1997).
Bruns, C., Shi, V., Hoyer, D., Schuurman, H. & Weckbecker, G. Somatostatin receptors and the potential use of Sandostatin to interfere with vascular remodelling. Eur. J. Endocrinol. 143, S3–S7 (2000).
Häyry, P., Räisänen, A., Ustinov, J., Mennander, A. & Paavonen, T. Somatostatin analogue lanreotide inhibits myocyte replication and several growth factors in allograft arteriosclerosis. FASEB J. 7, 1055–1060 (1993).
Curtis, S. B. et al. Effect of endothelial and adventitial injury on somatostatin receptor expression. Surgery 127, 577–583 (2000).
Watson, J. C. et al. Growing vascular endothelial cells express somatostatin subtype 2 receptors. Brit. J. Cancer 85, 266–272 (2001).
Wahlers, T., Oppelt, P., Pethig, K. & Heublein, B. Current experience with somatostatin analogues, especially angiopeptine, for the prevention of transplant vasculopathy in heart transplantation. Transplant. Proc. 30, 866–867 (1998).
Eriksen, U. H. et al. Randomized double-blind Scandinavian trial of angiopeptin versus placebo for the prevention of clinical events and restenosis after coronary balloon angioplasty. Am. Heart J. 130, 1–8 (1995).
Van Bergeijk, J. D. & Wilson, J. H. P. Somatostatin in inflammatory bowel disease. Mediators Inflamm. 6, 303–309 (1997).
Van Hagen, P. M. et al. Neuropeptides and their receptors in the immune system. Ann. Med. 31 (Suppl. 2), 15–22 (1999).
Krantic, S. Peptides as regulators of the immune system: emphasis on somatostatin. Peptides 21, 1941–1964 (2000).
Heemskerk, V. H., Daemen, M. & Buurman, W. A. Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) in immunity and inflammation. Cytokine Growth Factor Rev. 10, 5–14 (1999).
Bhatena, S. J. & Recant, L. Somatostatin receptors on circulating human blood cells. Horm. Metab. Res. 12, 277–278 (1980). First demonstration of SRIF receptors on lymphocytes.
Reubi, J. C., Waser, B. & Horisberger, U. In vivo autoradiographic and in vivo scintigraphic localization of somatostatin receptors in human lymphatic tissue. Blood 82, 2143–2148 (1993).
Albini, A. et al. Somatostatin controls Kaposi's sarcoma tumor growth through inhibition of angiogenesis. FASEB J. 13, 647–655 (1999).
Elliott, D. E., Li, J., Blum, A. M., Metwali, A., Patel, Y. C. & Weinstock, J. V. SSTR2A is the dominant somatostatin receptor subtype expressed by inflammatory cells, is widely expressed and directly regulates T cell IFN-γ release. Eur. J. Immunol. 29, 2454–2463 (1999).
Peluso, G. et al. Modulation of cytokine production in activated human monocytes by somatostatin. Neuropeptides 30, 443–451 (1996).
Karalis, K., Mastorakos, G., Chrousos, G. P. & Tolis, G. Somatostatin analogues suppress the inflammatory reaction in vivo. J. Clin. Invest. 93, 2000–2006 (1994).
Eliakim, R., Karmeli, F., Okon, E. & Rachmilewitz, D. Octreotide effectively decreases mucosal damage in experimental colitis. Gut 34, 264–269 (1993).
Fioravanti, A. et al. Somatostatin-14 and joint inflammation: evidence for intraarticular efficacy of prolonged administration in rheumatoid arthritis. Drugs Exp. Clin. Res. 21, 97–103 (1995).
Cascinu, S., Fedeli, A., Fedeli, S. L. & Catalano, G. Control of chemotherapy-induced diarrhea with octreotide. A randomized trial with placebo in patients receiving cisplatin. Oncology 51, 70–73 (1994).
Nunn, C., Schoeffter, P., Langenegger, D. & Hoyer, D. Functional characterisation of the putative somatostatin sst2 receptor antagonist CYN 154806. Naunyn Schmiedeberg's Arch Pharmacol. 367, 1–9 (2003).
Yang, L. et al. Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc. Natl Acad. Sci USA 95, 10836–10841 (1998).