Opportunities and challenges in CO2 utilization

Journal of Environmental Sciences - Tập 113 - Trang 322-344 - 2022
Sriram Valluri1, Victor Claremboux1, Surendra Kawatra1
1Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA

Tài liệu tham khảo

Abou Elmaaty, 2018, Supercritical carbon dioxide as a green media in textile dyeing: a review, Text. Res. J., 88, 1184, 10.1177/0040517517697639 Ahn, 2015, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol., 47, 647, 10.1016/j.net.2015.06.009 Albo, 2017, Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions, J. CO2 Util., 18, 164, 10.1016/j.jcou.2017.02.003 Alper, 2017, CO2 utilization: developments in conversion processes, Petroleum, 3, 109, 10.1016/j.petlm.2016.11.003 Aresta, 2010 Aresta, 2013, The changing paradigm of CO2 utilization, J. CO2 Util., 3, 65, 10.1016/j.jcou.2013.08.001 Bacchu, 2016, Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada, Int. J. Greenh. Gas Control, 44, 152, 10.1016/j.ijggc.2015.11.013 Bessel, 2003, Etchant solutions for the removal of Cu (0) in a supercritical CO2-based "dry" chemical mechanical planarization process for device fabrication, J. Am. Chem. Soc., 125, 4980, 10.1021/ja034091m Bhosale, 2015, Thermochemical conversion of CO2 into solar fuels using ferrite nanomaterials, 141 Bhosale, 2018, Nanostructured co-precipitated Ce0.9Ln0.1O2 (Ln = La, Pr, Sm, Nd, Gd, Tb, Dy, or Er) for thermochemical conversion of CO2, Ceram. Int., 44, 16688, 10.1016/j.ceramint.2018.06.096 Birdja, 2019, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy, 4, 732, 10.1038/s41560-019-0450-y Buelens, 2016, Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle, Science, 354, 449, 10.1126/science.aah7161 Cabeza, 2017, Supercritical CO2 as heat transfer fluid: a review, Appl. Therm. Eng., 125, 799, 10.1016/j.applthermaleng.2017.07.049 Catizzone, 2018, CO2 recycling to dimethyl ether: state-of-the-art and perspectives, Molecules, 23, 1 Chandrasekaran, 1987, In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2− on platinum, Surf. Sci., 185, 495, 10.1016/S0039-6028(87)80173-5 Chang, 2016, The role of β-C2S and γ-C2S in carbon capture and strength development, Mater. Struct., 49, 4417, 10.1617/s11527-016-0797-5 Chapman, 2015, Adding value to power station captured CO2: tolerant Zn and Mg homogenous catalysts for polycarbonate polyol production, ACS Catal., 5, 1581, 10.1021/cs501798s Chauvy, 2019, Selecting emerging CO2 utilization products for short-to mid-term, Appl. Energy, 236, 662, 10.1016/j.apenergy.2018.11.096 Chawl, 2013, Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts, Proc. Eng., 355, 461, 10.1016/j.proeng.2013.01.065 Chen, 2015, Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals, Catal. Sci. Technol., 5, 161, 10.1039/C4CY00906A Chen, 2018, Integration of chemical looping combustion and supercritical CO2 cycle for combined heat and power generation with CO2 capture, Energy Convers. Manag., 167, 113, 10.1016/j.enconman.2018.04.083 Chi, 2002, Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method, J. Mar. Sci. Technol., 10, 14, 10.51400/2709-6998.2296 Chueh, 2010, A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation, Philos. Trans. R. Soc. A, 368, 3269, 10.1098/rsta.2010.0114 Dai, 2017, Ultrastable atomic copper nanosheets for electrochemical reduction of carbon dioxide, Sci. Adv., 3, 1, 10.1126/sciadv.1701069 Damyanova, 2012, Ni-based catalysts for reforming of methane with CO2, Int. J. Hydrogen Energy, 37, 15966, 10.1016/j.ijhydene.2012.08.056 Darensbourg, 2007, Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2, Chem. Rev., 107, 2388, 10.1021/cr068363q De Falco, 2016, Dimethyl ether production from CO2 rich feedstocks in a one-step process: thermodynamic evaluation and reactor simulation, Chem. Eng. J., 294, 400, 10.1016/j.cej.2016.03.009 Edenhoffer, 2015 Ehsan, 2018, A comprehensive review on heat transfer and pressure drop characteristics with supercritical CO2 under heating and cooling applications, Renew. Sustain. Energy Rev., 92, 658, 10.1016/j.rser.2018.04.106 EIA, 2020. Annual Energy Outlook 2020. Eisaman, 2011, CO2 separation using bipolar membrane electrodialysis, Energy Environ. Sci., 4, 1319, 10.1039/C0EE00303D Evans, 2016, The history, challenges, and new developments in the management and use of bauxite residue, J. Sustain. Metall., 2, 316, 10.1007/s40831-016-0060-x Fang, 2015, Microstructure changes of waste hydrated cement paste induced by accelerated carbonation, Constr. Build. Mater., 76, 360, 10.1016/j.conbuildmat.2014.12.017 Finney, 2010 Fischedick, 2014, Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod., 84, 563, 10.1016/j.jclepro.2014.05.063 Gangadharan, 2012, Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem. Eng. Res. Des., 90, 1956, 10.1016/j.cherd.2012.04.008 Gao, 2015, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles, J. Am. Chem. Soc., 137, 4288, 10.1021/jacs.5b00046 Goli, 2016, An overview of biological processes and their potential for CO2 capture, J. Environ. Manage., 183, 41, 10.1016/j.jenvman.2016.08.054 2019, Methanol Market Size Worth $38.98 Billion By 2025 Graves, 2011, Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability, Solid State Ion., 192, 398, 10.1016/j.ssi.2010.06.014 Guharoy, 2018, Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane, J. CO2 Util., 27, 1, 10.1016/j.jcou.2018.06.024 Han, 2017, Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2, J. Hazard. Mater., 326, 87, 10.1016/j.jhazmat.2016.12.020 Hassas, 2020, Precipitation of rare earth elements from acid mine drainage by CO2 mineralization process, Chem. Eng. J., 399 Hepburn, 2019, The technological and economic prospects for CO2 utilization and removal, Nature, 575, 87, 10.1038/s41586-019-1681-6 Huang, 2014, A review: CO2 utilization, Aerosol Air Qual. Res., 14, 480, 10.4209/aaqr.2013.10.0326 Huntzinger, 2009, Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol., 43, 1986, 10.1021/es802910z Inoue, 1979, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277, 637, 10.1038/277637a0 Jang, 2016, Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials, Constr. Build. Mater., 127, 762, 10.1016/j.conbuildmat.2016.10.017 Jang, 2016, Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement, Cem. Concr. Res., 76, 50, 10.1016/j.cemconres.2016.01.001 Jarvis, 2018, Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis, Renew. Sustain. Energy Rev., 85, 46, 10.1016/j.rser.2018.01.007 Jiang, 2019, An integrated technical-economic model for evaluating CO2 enhanced oil recovery development, Appl. Energy, 247, 190, 10.1016/j.apenergy.2019.04.025 Jing, 2004, Syngas production from reforming of methane with CO2 and O2 over Ni/SrO-SiO2 catalysts in fluidized bed reactor, Int. J. Hydrogen Energy, 29, 1245, 10.1016/j.ijhydene.2004.01.012 Jones, 2014, Electrochemical CO2 reduction: recent advances and current trends, Isr. J. Chem., 54, 1451, 10.1002/ijch.201400081 Juan-Juan, 2009, Nickel catalyst activation in the carbon dioxide reforming of methane: effect of pretreatments, Appl. Catal., A, 197, 27, 10.1016/j.apcata.2008.10.058 Kaneco, 2006, Electrochemical reduction of CO2 in copper particle-suspended methanol, Chem. Eng. J., 119, 107, 10.1016/j.cej.2006.03.030 Karamian, 2016, On the general mechanism of photocatalytic reduction of CO2, J. CO2 Util., 16, 194, 10.1016/j.jcou.2016.07.004 Kawatra, 2020 Kawatra, 2019, Application of surface chemical fundamentals to improving industrial filtration rates, Miner. Process. Extr. Metall. Rev., 40, 292, 10.1080/08827508.2019.1598404 Kaydouh, 2015, Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane, C. R. Chim., 18, 293, 10.1016/j.crci.2015.01.004 Kiggins, 2015, The strategic and security implications of rare earths, 1 Kim, 2000, Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal., A, 197, 191, 10.1016/S0926-860X(99)00487-1 Knuutila, 2009, CO2 capture from coal-fired power plants based on sodium carbonate slurry; a systems feasibility and sensitivity study, Int. J. Greenh. Gas Control, 3, 143, 10.1016/j.ijggc.2008.06.006 Kong, 2008, Pretreatment of textile dyeing wastewater using an anoxic baffled reactor, Bioresour. Technol., 99, 7886, 10.1016/j.biortech.2008.02.026 Koytsoumpa, 2018, The CO2 economy: review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132, 3, 10.1016/j.supflu.2017.07.029 Kuuskraa, 2013, CO2 utilization from "next generation" CO2 enhanced oil recovery technology, Energy Proc., 37, 6854, 10.1016/j.egypro.2013.06.618 Kuuskraa, 2016, CO2 enhanced oil recovery for offshore oil reservoirs Kwak, 2017, Techno-economic evaluation of CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply, Int. J. Greenh. Gas Control, 58, 169, 10.1016/j.ijggc.2017.01.002 Lake, 2014, SPE Liang, 2020, Electrolytic cell design for electrochemical CO2 reduction, J. CO2 Util., 35, 90, 10.1016/j.jcou.2019.09.007 Liu, 2017, Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates, J. Am. Chem. Soc., 139, 2160, 10.1021/jacs.6b12103 Lou, 1997, Temperature and pressure effects on solubility supercritical carbon dioxide and retention in supercritical fluid chromatography, J. Chromatogr., 785, 57, 10.1016/S0021-9673(97)00693-6 Luckow, 2015, 2015 carbon dioxide price forecast Meyer, 2004, Concrete materials and sustainable development in the USA, Struct. Eng. Int., 14, 1348, 10.2749/101686604777963757 Mistry, 2016, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, Nat. Commun., 7, 12123, 10.1038/ncomms12123 Muhammad, 2019, Design and optimization of CO2 pressurization system integrated with a supercritical power cycle for the CO2 capture and storage system, Energy Convers. Manag., 195, 609, 10.1016/j.enconman.2019.05.029 Mukiza, 2019, Utilization of red mud in road base and subgrade materials: a review, Resour. Conserv. Recy., 141, 187, 10.1016/j.resconrec.2018.10.031 Myers, 2019, Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas, Int. J. Greenh. Gas Control, 87, 100, 10.1016/j.ijggc.2019.05.021 Nagasawa, 2009, A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis, AlChE J., 55, 3286, 10.1002/aic.11907 Naims, 2016, Economics of carbon dioxide capture and utilization – a supply and demand perspective, Environ. Sci. Pollut. Res., 23, 22226, 10.1007/s11356-016-6810-2 Nair, 2016, Tailoring hybrid nonstoichiometric ceria redox cycle for combined solar methane reforming and thermochemical conversion of H2O/CO2, Energy Fuel, 30, 6050, 10.1021/acs.energyfuels.6b01063 Nikoo, 2011, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Process. Technol., 92, 678, 10.1016/j.fuproc.2010.11.027 Niu, 2017, A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production, Sci. Adv., 3, 1, 10.1126/sciadv.1700921 Noyori, 1999, Supercritical fluids: Introduction, Chem. Rev., 99, 353, 10.1021/cr980085a Núñez-López, 2019, Environmental and operational performance of CO2-EOR as a CCUS technology: A Cranfield example with dynamic LCA considerations, Energies, 12, 448, 10.3390/en12030448 Pade, 2007, The CO2 uptake of concrete in a 100-year perspective, Cem. Concr. Res., 37, 1348, 10.1016/j.cemconres.2007.06.009 Pan, 2016, Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation, J. Clean. Prod., 137, 617, 10.1016/j.jclepro.2016.07.112 Pardal, 2017, Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte, J. CO2 Util., 18, 62, 10.1016/j.jcou.2017.01.007 Pawelec, 2007, Structural and surface features of PtNi catalysts for reforming of methane with CO2, Appl. Catal., A, 323, 188, 10.1016/j.apcata.2007.02.017 Pires, 2012, Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept, Renew. Sustain. Energy Rev., 16, 3043, 10.1016/j.rser.2012.02.055 Qu, 2005, Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode, Electrochim. Acta, 50, 3576, 10.1016/j.electacta.2004.11.061 Ramsey, 2009, Mini-Review: Green sustainable processes using supercritical fluid carbon dioxide, J. Environ. Sci., 21, 720, 10.1016/S1001-0742(08)62330-X Raventós, 2002, Application and possibilities of supercritical CO2 extraction in food processing industry: an overview, Food Sci. Technol. Int., 8, 269, 10.1106/108201302029451 Razzak, 2017, Biological CO2 fixation with production of microalgae in wastewater - a review, Renew. Sustain. Energy Rev., 76, 379, 10.1016/j.rser.2017.02.038 Ren, 2015, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts, ACS Catal., 5, 2814, 10.1021/cs502128q Renforth, 2012, Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: the effects of gypsum dosing, Sci. Total Environ., 421, 253, 10.1016/j.scitotenv.2012.01.046 Reuillard, 2017, Tuning product selectivity for aqueous CO2 reduction with a Mn (bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode, J. Am. Chem. Soc., 139, 14425, 10.1021/jacs.7b06269 Rezaei, 2006, Syngas production by methane reforming with carbon dioxide on noble metal catalysts, J. Nat. Gas Chem., 15, 327, 10.1016/S1003-9953(07)60014-0 Ripke, 2004, Effects of retained calcium ions in iron ore filtration and pelletization performance, 384 Rivera, 2018, Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching, Miner. Eng., 119, 82, 10.1016/j.mineng.2018.01.023 Rochelle, 2009, Amine scrubbing for CO2 capture, Science, 325, 1652, 10.1126/science.1176731 Rochfort, 2020, Utilisation of design of experiments approach to optimise supercritical fluid extraction of medicinal cannabis, Sci. Rep., 10, 1, 10.1038/s41598-020-66119-1 Rogelj, 2016, Paris agreement climate proposals need a boost to keep warming well below 2°C, Nature, 534, 631, 10.1038/nature18307 Rostami, 2012, Carbonation curing versus steam curing for precast concrete production, J. Mater. Civ. Eng., 24, 1221, 10.1061/(ASCE)MT.1943-5533.0000462 Rostami, 2012, Microstructure of cement paste subject to early carbonation curing, Cem. Concr. Res., 42, 186, 10.1016/j.cemconres.2011.09.010 Sahena, 2009, Application of supercritical CO2 in lipid extraction - a review, J. Food Eng., 95, 240, 10.1016/j.jfoodeng.2009.06.026 Sahu, 2010, Neutralization of red mud using CO2 sequestration cycle, J. Hazard. Mater., 179, 28, 10.1016/j.jhazmat.2010.02.052 Shao, 2006, CO2 sequestration using calcium-silicate concrete, Can. J. Civ. Eng., 33, 776, 10.1139/l05-105 Skjånes, 2007, BioCO2 - A multidisciplinary, biological approach to using solar energy to capture CO2 while producing H2 and high value products, Biomol. Eng., 24, 405, 10.1016/j.bioeng.2007.06.002 Skjånes, 2013, Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process, Crit. Rev. Biotechnol., 33, 172, 10.3109/07388551.2012.681625 Sokolov, 2012, Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst, Appl. Catal., B, 113, 19, 10.1016/j.apcatb.2011.09.035 Spigarelli, 2013, Opportunities and challenges in carbon dioxide capture, J. CO2 Util., 1, 69, 10.1016/j.jcou.2013.03.002 Sun, 2019, Recent advances in surfactant-stabilized N2/CO2 foams in enhanced oil recovery, Fuel, 241, 83, 10.1016/j.fuel.2018.12.016 Sweatman, 2011, Outlook and technologies for offshore CO2 EOR/CCS projects Tahir, 2013, Advances in light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels, Energy Convers. Manag., 76, 194, 10.1016/j.enconman.2013.07.046 Tan, 2006, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets, Catal. Today, 115, 269, 10.1016/j.cattod.2006.02.057 Tarek, 2019, Hetero-structure CdS-CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol, Int. J. Hydrogen Energy, 44, 26271, 10.1016/j.ijhydene.2019.08.074 Tseng, 2004, Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal., 221, 432, 10.1016/j.jcat.2003.09.002 Uhm, 2014, Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell, Curr. Appl. Phys., 14, 672, 10.1016/j.cap.2014.02.013 Ulissi, 2017, To address surface reaction network complexity using scaling relations machine learning and DFT calculations, Nat. Commun., 8, 1, 10.1038/ncomms14621 Valluri, 2019, Electro catalytic reduction of CO2 to oxalic acid Valluri, 2019, A step change for carbon dioxide capture - enhancement with frothing agents Valluri, 2021, Reduced reagent regeneration energy for CO2 capture with bipolar membrane electrodialysis, Fuel Process. Technol., 213, 10.1016/j.fuproc.2020.106691 Valluri, 2021, Simultaneous removal of CO2, NOx and SOx using single stage absorption column, J. Environ. Sci., 103, 279, 10.1016/j.jes.2020.11.006 Valluri, 2021, Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture, Fuel Process. Technol., 212, 10.1016/j.fuproc.2020.106620 Vass, 2019, The occurrence and concentration of rare earth elements in acid mine drainage and treatment byproducts: part 1 – initial survey of the Northern Appalachian Coal Basin, Min. Metall. Explor., 36, 903 Vu, 2019, Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels, Adv. Funct. Mater., 29, 10.1002/adfm.201901825 Wallace, 2011 Wang, 2011, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysis, J. Mater. Chem., 21, 13452, 10.1039/c1jm12367j Wang, 2017, Utilization of CO2 in metallurgical processes in China, Miner. Process. Extr. Metall., 126, 47, 10.1080/03719553.2016.1255401 Wang, 2017, A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol, Sci. Adv., 3, 1, 10.1126/sciadv.1701290 Wang, 2019, A review on comprehensive utilization of red mud and prospect analysis, Minerals, 9, 362, 10.3390/min9060362 Wei, 2015, Economic evaluation on CO2-EOR of onshore oil fields in China, Int. J. Greenh. Gas Control, 37, 170, 10.1016/j.ijggc.2015.01.014 Weng, 2020, In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions, Sci. Adv., 6, 1, 10.1126/sciadv.aay9278 Whipple, 2010, Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH, Electrochem. Solid-State Lett., 13, B109, 10.1149/1.3456590 Wilcox, 2012 Yan, 2013, Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol, J. Am. Chem. Soc., 135, 14020, 10.1021/ja4064052 Yang, 2018, Atomically dispersed Ni (I) as the active site for electrochemical CO2 reduction, Nat. Energy, 135, 140, 10.1038/s41560-017-0078-8 Yi, 2009, Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process, ISIJ Int., 49, 1694, 10.2355/isijinternational.49.1694 Zhang, 2016, Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete, Constr. Build. Mater., 123, 516, 10.1016/j.conbuildmat.2016.07.041 Zhang, 2020, Optimized foam-assisted CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply, Fuel, 267, 10.1016/j.fuel.2020.117099 Zhao, 2009, Photocatalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation, J. Clean. Prod., 17, 1025, 10.1016/j.jclepro.2009.02.016 Zhou, 2014, Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids, Electrochem. Commun., 46, 103, 10.1016/j.elecom.2014.06.023