Opportunities and challenges in CO2 utilization
Tài liệu tham khảo
Abou Elmaaty, 2018, Supercritical carbon dioxide as a green media in textile dyeing: a review, Text. Res. J., 88, 1184, 10.1177/0040517517697639
Ahn, 2015, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol., 47, 647, 10.1016/j.net.2015.06.009
Albo, 2017, Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions, J. CO2 Util., 18, 164, 10.1016/j.jcou.2017.02.003
Alper, 2017, CO2 utilization: developments in conversion processes, Petroleum, 3, 109, 10.1016/j.petlm.2016.11.003
Aresta, 2010
Aresta, 2013, The changing paradigm of CO2 utilization, J. CO2 Util., 3, 65, 10.1016/j.jcou.2013.08.001
Bacchu, 2016, Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada, Int. J. Greenh. Gas Control, 44, 152, 10.1016/j.ijggc.2015.11.013
Bessel, 2003, Etchant solutions for the removal of Cu (0) in a supercritical CO2-based "dry" chemical mechanical planarization process for device fabrication, J. Am. Chem. Soc., 125, 4980, 10.1021/ja034091m
Bhosale, 2015, Thermochemical conversion of CO2 into solar fuels using ferrite nanomaterials, 141
Bhosale, 2018, Nanostructured co-precipitated Ce0.9Ln0.1O2 (Ln = La, Pr, Sm, Nd, Gd, Tb, Dy, or Er) for thermochemical conversion of CO2, Ceram. Int., 44, 16688, 10.1016/j.ceramint.2018.06.096
Birdja, 2019, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy, 4, 732, 10.1038/s41560-019-0450-y
Buelens, 2016, Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle, Science, 354, 449, 10.1126/science.aah7161
Cabeza, 2017, Supercritical CO2 as heat transfer fluid: a review, Appl. Therm. Eng., 125, 799, 10.1016/j.applthermaleng.2017.07.049
Catizzone, 2018, CO2 recycling to dimethyl ether: state-of-the-art and perspectives, Molecules, 23, 1
Chandrasekaran, 1987, In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2− on platinum, Surf. Sci., 185, 495, 10.1016/S0039-6028(87)80173-5
Chang, 2016, The role of β-C2S and γ-C2S in carbon capture and strength development, Mater. Struct., 49, 4417, 10.1617/s11527-016-0797-5
Chapman, 2015, Adding value to power station captured CO2: tolerant Zn and Mg homogenous catalysts for polycarbonate polyol production, ACS Catal., 5, 1581, 10.1021/cs501798s
Chauvy, 2019, Selecting emerging CO2 utilization products for short-to mid-term, Appl. Energy, 236, 662, 10.1016/j.apenergy.2018.11.096
Chawl, 2013, Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts, Proc. Eng., 355, 461, 10.1016/j.proeng.2013.01.065
Chen, 2015, Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals, Catal. Sci. Technol., 5, 161, 10.1039/C4CY00906A
Chen, 2018, Integration of chemical looping combustion and supercritical CO2 cycle for combined heat and power generation with CO2 capture, Energy Convers. Manag., 167, 113, 10.1016/j.enconman.2018.04.083
Chi, 2002, Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method, J. Mar. Sci. Technol., 10, 14, 10.51400/2709-6998.2296
Chueh, 2010, A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation, Philos. Trans. R. Soc. A, 368, 3269, 10.1098/rsta.2010.0114
Dai, 2017, Ultrastable atomic copper nanosheets for electrochemical reduction of carbon dioxide, Sci. Adv., 3, 1, 10.1126/sciadv.1701069
Damyanova, 2012, Ni-based catalysts for reforming of methane with CO2, Int. J. Hydrogen Energy, 37, 15966, 10.1016/j.ijhydene.2012.08.056
Darensbourg, 2007, Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2, Chem. Rev., 107, 2388, 10.1021/cr068363q
De Falco, 2016, Dimethyl ether production from CO2 rich feedstocks in a one-step process: thermodynamic evaluation and reactor simulation, Chem. Eng. J., 294, 400, 10.1016/j.cej.2016.03.009
Edenhoffer, 2015
Ehsan, 2018, A comprehensive review on heat transfer and pressure drop characteristics with supercritical CO2 under heating and cooling applications, Renew. Sustain. Energy Rev., 92, 658, 10.1016/j.rser.2018.04.106
EIA, 2020. Annual Energy Outlook 2020.
Eisaman, 2011, CO2 separation using bipolar membrane electrodialysis, Energy Environ. Sci., 4, 1319, 10.1039/C0EE00303D
Evans, 2016, The history, challenges, and new developments in the management and use of bauxite residue, J. Sustain. Metall., 2, 316, 10.1007/s40831-016-0060-x
Fang, 2015, Microstructure changes of waste hydrated cement paste induced by accelerated carbonation, Constr. Build. Mater., 76, 360, 10.1016/j.conbuildmat.2014.12.017
Finney, 2010
Fischedick, 2014, Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod., 84, 563, 10.1016/j.jclepro.2014.05.063
Gangadharan, 2012, Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem. Eng. Res. Des., 90, 1956, 10.1016/j.cherd.2012.04.008
Gao, 2015, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles, J. Am. Chem. Soc., 137, 4288, 10.1021/jacs.5b00046
Goli, 2016, An overview of biological processes and their potential for CO2 capture, J. Environ. Manage., 183, 41, 10.1016/j.jenvman.2016.08.054
2019, Methanol Market Size Worth $38.98 Billion By 2025
Graves, 2011, Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability, Solid State Ion., 192, 398, 10.1016/j.ssi.2010.06.014
Guharoy, 2018, Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane, J. CO2 Util., 27, 1, 10.1016/j.jcou.2018.06.024
Han, 2017, Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2, J. Hazard. Mater., 326, 87, 10.1016/j.jhazmat.2016.12.020
Hassas, 2020, Precipitation of rare earth elements from acid mine drainage by CO2 mineralization process, Chem. Eng. J., 399
Hepburn, 2019, The technological and economic prospects for CO2 utilization and removal, Nature, 575, 87, 10.1038/s41586-019-1681-6
Huang, 2014, A review: CO2 utilization, Aerosol Air Qual. Res., 14, 480, 10.4209/aaqr.2013.10.0326
Huntzinger, 2009, Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol., 43, 1986, 10.1021/es802910z
Inoue, 1979, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277, 637, 10.1038/277637a0
Jang, 2016, Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials, Constr. Build. Mater., 127, 762, 10.1016/j.conbuildmat.2016.10.017
Jang, 2016, Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement, Cem. Concr. Res., 76, 50, 10.1016/j.cemconres.2016.01.001
Jarvis, 2018, Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis, Renew. Sustain. Energy Rev., 85, 46, 10.1016/j.rser.2018.01.007
Jiang, 2019, An integrated technical-economic model for evaluating CO2 enhanced oil recovery development, Appl. Energy, 247, 190, 10.1016/j.apenergy.2019.04.025
Jing, 2004, Syngas production from reforming of methane with CO2 and O2 over Ni/SrO-SiO2 catalysts in fluidized bed reactor, Int. J. Hydrogen Energy, 29, 1245, 10.1016/j.ijhydene.2004.01.012
Jones, 2014, Electrochemical CO2 reduction: recent advances and current trends, Isr. J. Chem., 54, 1451, 10.1002/ijch.201400081
Juan-Juan, 2009, Nickel catalyst activation in the carbon dioxide reforming of methane: effect of pretreatments, Appl. Catal., A, 197, 27, 10.1016/j.apcata.2008.10.058
Kaneco, 2006, Electrochemical reduction of CO2 in copper particle-suspended methanol, Chem. Eng. J., 119, 107, 10.1016/j.cej.2006.03.030
Karamian, 2016, On the general mechanism of photocatalytic reduction of CO2, J. CO2 Util., 16, 194, 10.1016/j.jcou.2016.07.004
Kawatra, 2020
Kawatra, 2019, Application of surface chemical fundamentals to improving industrial filtration rates, Miner. Process. Extr. Metall. Rev., 40, 292, 10.1080/08827508.2019.1598404
Kaydouh, 2015, Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane, C. R. Chim., 18, 293, 10.1016/j.crci.2015.01.004
Kiggins, 2015, The strategic and security implications of rare earths, 1
Kim, 2000, Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal., A, 197, 191, 10.1016/S0926-860X(99)00487-1
Knuutila, 2009, CO2 capture from coal-fired power plants based on sodium carbonate slurry; a systems feasibility and sensitivity study, Int. J. Greenh. Gas Control, 3, 143, 10.1016/j.ijggc.2008.06.006
Kong, 2008, Pretreatment of textile dyeing wastewater using an anoxic baffled reactor, Bioresour. Technol., 99, 7886, 10.1016/j.biortech.2008.02.026
Koytsoumpa, 2018, The CO2 economy: review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132, 3, 10.1016/j.supflu.2017.07.029
Kuuskraa, 2013, CO2 utilization from "next generation" CO2 enhanced oil recovery technology, Energy Proc., 37, 6854, 10.1016/j.egypro.2013.06.618
Kuuskraa, 2016, CO2 enhanced oil recovery for offshore oil reservoirs
Kwak, 2017, Techno-economic evaluation of CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply, Int. J. Greenh. Gas Control, 58, 169, 10.1016/j.ijggc.2017.01.002
Lake, 2014, SPE
Liang, 2020, Electrolytic cell design for electrochemical CO2 reduction, J. CO2 Util., 35, 90, 10.1016/j.jcou.2019.09.007
Liu, 2017, Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates, J. Am. Chem. Soc., 139, 2160, 10.1021/jacs.6b12103
Lou, 1997, Temperature and pressure effects on solubility supercritical carbon dioxide and retention in supercritical fluid chromatography, J. Chromatogr., 785, 57, 10.1016/S0021-9673(97)00693-6
Luckow, 2015, 2015 carbon dioxide price forecast
Meyer, 2004, Concrete materials and sustainable development in the USA, Struct. Eng. Int., 14, 1348, 10.2749/101686604777963757
Mistry, 2016, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, Nat. Commun., 7, 12123, 10.1038/ncomms12123
Muhammad, 2019, Design and optimization of CO2 pressurization system integrated with a supercritical power cycle for the CO2 capture and storage system, Energy Convers. Manag., 195, 609, 10.1016/j.enconman.2019.05.029
Mukiza, 2019, Utilization of red mud in road base and subgrade materials: a review, Resour. Conserv. Recy., 141, 187, 10.1016/j.resconrec.2018.10.031
Myers, 2019, Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas, Int. J. Greenh. Gas Control, 87, 100, 10.1016/j.ijggc.2019.05.021
Nagasawa, 2009, A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis, AlChE J., 55, 3286, 10.1002/aic.11907
Naims, 2016, Economics of carbon dioxide capture and utilization – a supply and demand perspective, Environ. Sci. Pollut. Res., 23, 22226, 10.1007/s11356-016-6810-2
Nair, 2016, Tailoring hybrid nonstoichiometric ceria redox cycle for combined solar methane reforming and thermochemical conversion of H2O/CO2, Energy Fuel, 30, 6050, 10.1021/acs.energyfuels.6b01063
Nikoo, 2011, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Process. Technol., 92, 678, 10.1016/j.fuproc.2010.11.027
Niu, 2017, A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production, Sci. Adv., 3, 1, 10.1126/sciadv.1700921
Noyori, 1999, Supercritical fluids: Introduction, Chem. Rev., 99, 353, 10.1021/cr980085a
Núñez-López, 2019, Environmental and operational performance of CO2-EOR as a CCUS technology: A Cranfield example with dynamic LCA considerations, Energies, 12, 448, 10.3390/en12030448
Pade, 2007, The CO2 uptake of concrete in a 100-year perspective, Cem. Concr. Res., 37, 1348, 10.1016/j.cemconres.2007.06.009
Pan, 2016, Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation, J. Clean. Prod., 137, 617, 10.1016/j.jclepro.2016.07.112
Pardal, 2017, Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte, J. CO2 Util., 18, 62, 10.1016/j.jcou.2017.01.007
Pawelec, 2007, Structural and surface features of PtNi catalysts for reforming of methane with CO2, Appl. Catal., A, 323, 188, 10.1016/j.apcata.2007.02.017
Pires, 2012, Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept, Renew. Sustain. Energy Rev., 16, 3043, 10.1016/j.rser.2012.02.055
Qu, 2005, Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode, Electrochim. Acta, 50, 3576, 10.1016/j.electacta.2004.11.061
Ramsey, 2009, Mini-Review: Green sustainable processes using supercritical fluid carbon dioxide, J. Environ. Sci., 21, 720, 10.1016/S1001-0742(08)62330-X
Raventós, 2002, Application and possibilities of supercritical CO2 extraction in food processing industry: an overview, Food Sci. Technol. Int., 8, 269, 10.1106/108201302029451
Razzak, 2017, Biological CO2 fixation with production of microalgae in wastewater - a review, Renew. Sustain. Energy Rev., 76, 379, 10.1016/j.rser.2017.02.038
Ren, 2015, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts, ACS Catal., 5, 2814, 10.1021/cs502128q
Renforth, 2012, Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: the effects of gypsum dosing, Sci. Total Environ., 421, 253, 10.1016/j.scitotenv.2012.01.046
Reuillard, 2017, Tuning product selectivity for aqueous CO2 reduction with a Mn (bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode, J. Am. Chem. Soc., 139, 14425, 10.1021/jacs.7b06269
Rezaei, 2006, Syngas production by methane reforming with carbon dioxide on noble metal catalysts, J. Nat. Gas Chem., 15, 327, 10.1016/S1003-9953(07)60014-0
Ripke, 2004, Effects of retained calcium ions in iron ore filtration and pelletization performance, 384
Rivera, 2018, Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching, Miner. Eng., 119, 82, 10.1016/j.mineng.2018.01.023
Rochelle, 2009, Amine scrubbing for CO2 capture, Science, 325, 1652, 10.1126/science.1176731
Rochfort, 2020, Utilisation of design of experiments approach to optimise supercritical fluid extraction of medicinal cannabis, Sci. Rep., 10, 1, 10.1038/s41598-020-66119-1
Rogelj, 2016, Paris agreement climate proposals need a boost to keep warming well below 2°C, Nature, 534, 631, 10.1038/nature18307
Rostami, 2012, Carbonation curing versus steam curing for precast concrete production, J. Mater. Civ. Eng., 24, 1221, 10.1061/(ASCE)MT.1943-5533.0000462
Rostami, 2012, Microstructure of cement paste subject to early carbonation curing, Cem. Concr. Res., 42, 186, 10.1016/j.cemconres.2011.09.010
Sahena, 2009, Application of supercritical CO2 in lipid extraction - a review, J. Food Eng., 95, 240, 10.1016/j.jfoodeng.2009.06.026
Sahu, 2010, Neutralization of red mud using CO2 sequestration cycle, J. Hazard. Mater., 179, 28, 10.1016/j.jhazmat.2010.02.052
Shao, 2006, CO2 sequestration using calcium-silicate concrete, Can. J. Civ. Eng., 33, 776, 10.1139/l05-105
Skjånes, 2007, BioCO2 - A multidisciplinary, biological approach to using solar energy to capture CO2 while producing H2 and high value products, Biomol. Eng., 24, 405, 10.1016/j.bioeng.2007.06.002
Skjånes, 2013, Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process, Crit. Rev. Biotechnol., 33, 172, 10.3109/07388551.2012.681625
Sokolov, 2012, Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst, Appl. Catal., B, 113, 19, 10.1016/j.apcatb.2011.09.035
Spigarelli, 2013, Opportunities and challenges in carbon dioxide capture, J. CO2 Util., 1, 69, 10.1016/j.jcou.2013.03.002
Sun, 2019, Recent advances in surfactant-stabilized N2/CO2 foams in enhanced oil recovery, Fuel, 241, 83, 10.1016/j.fuel.2018.12.016
Sweatman, 2011, Outlook and technologies for offshore CO2 EOR/CCS projects
Tahir, 2013, Advances in light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels, Energy Convers. Manag., 76, 194, 10.1016/j.enconman.2013.07.046
Tan, 2006, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets, Catal. Today, 115, 269, 10.1016/j.cattod.2006.02.057
Tarek, 2019, Hetero-structure CdS-CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol, Int. J. Hydrogen Energy, 44, 26271, 10.1016/j.ijhydene.2019.08.074
Tseng, 2004, Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal., 221, 432, 10.1016/j.jcat.2003.09.002
Uhm, 2014, Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell, Curr. Appl. Phys., 14, 672, 10.1016/j.cap.2014.02.013
Ulissi, 2017, To address surface reaction network complexity using scaling relations machine learning and DFT calculations, Nat. Commun., 8, 1, 10.1038/ncomms14621
Valluri, 2019, Electro catalytic reduction of CO2 to oxalic acid
Valluri, 2019, A step change for carbon dioxide capture - enhancement with frothing agents
Valluri, 2021, Reduced reagent regeneration energy for CO2 capture with bipolar membrane electrodialysis, Fuel Process. Technol., 213, 10.1016/j.fuproc.2020.106691
Valluri, 2021, Simultaneous removal of CO2, NOx and SOx using single stage absorption column, J. Environ. Sci., 103, 279, 10.1016/j.jes.2020.11.006
Valluri, 2021, Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture, Fuel Process. Technol., 212, 10.1016/j.fuproc.2020.106620
Vass, 2019, The occurrence and concentration of rare earth elements in acid mine drainage and treatment byproducts: part 1 – initial survey of the Northern Appalachian Coal Basin, Min. Metall. Explor., 36, 903
Vu, 2019, Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels, Adv. Funct. Mater., 29, 10.1002/adfm.201901825
Wallace, 2011
Wang, 2011, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysis, J. Mater. Chem., 21, 13452, 10.1039/c1jm12367j
Wang, 2017, Utilization of CO2 in metallurgical processes in China, Miner. Process. Extr. Metall., 126, 47, 10.1080/03719553.2016.1255401
Wang, 2017, A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol, Sci. Adv., 3, 1, 10.1126/sciadv.1701290
Wang, 2019, A review on comprehensive utilization of red mud and prospect analysis, Minerals, 9, 362, 10.3390/min9060362
Wei, 2015, Economic evaluation on CO2-EOR of onshore oil fields in China, Int. J. Greenh. Gas Control, 37, 170, 10.1016/j.ijggc.2015.01.014
Weng, 2020, In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions, Sci. Adv., 6, 1, 10.1126/sciadv.aay9278
Whipple, 2010, Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH, Electrochem. Solid-State Lett., 13, B109, 10.1149/1.3456590
Wilcox, 2012
Yan, 2013, Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol, J. Am. Chem. Soc., 135, 14020, 10.1021/ja4064052
Yang, 2018, Atomically dispersed Ni (I) as the active site for electrochemical CO2 reduction, Nat. Energy, 135, 140, 10.1038/s41560-017-0078-8
Yi, 2009, Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process, ISIJ Int., 49, 1694, 10.2355/isijinternational.49.1694
Zhang, 2016, Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete, Constr. Build. Mater., 123, 516, 10.1016/j.conbuildmat.2016.07.041
Zhang, 2020, Optimized foam-assisted CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply, Fuel, 267, 10.1016/j.fuel.2020.117099
Zhao, 2009, Photocatalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation, J. Clean. Prod., 17, 1025, 10.1016/j.jclepro.2009.02.016
Zhou, 2014, Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids, Electrochem. Commun., 46, 103, 10.1016/j.elecom.2014.06.023