Opportunistic routing with in-network aggregation for duty-cycled WSNs with delay requirements
Tóm tắt
This paper proposes an opportunistic routing protocol for wireless sensor networks that works on top of an asynchronous duty-cycling medium access control (MAC) protocol. The proposed protocol is designed for applications that are not real-time but still have some requirements on packet delay. The main idea is that if a packet has time to spare, it can wait on a node hoping that it can be aggregated with other packets, resulting in reduced number of transmissions. The forwarders and the packet hold time depend on the energy status of nodes in the network. The simulation results show that the proposed protocol achieves longer network lifetime compared to the other state-of-the-art protocols, while satisfying application delay requirements.
Tài liệu tham khảo
Polastre J, Hill J, Culler D: Versatile low power media access for wireless sensor networks. ACM Sensys 2004, 95-107.
Buettner M, Yee G, Anderson E, Han R: X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. ACM Sensys 2006, 307-320.
Moss D, Levis P: Exploiting physical and link layer boundaries in low-power networking. Stanford University Technical Report SING-08-00; (2008)
Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay D, Hill J, Welsh M, Brewer E, Culler D: Tinyos: An operating system for sensor networks. Ambient Intelligence 2005, 115-148.
Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P: Collection tree protocol. ACM Sensys 2009, 1-14.
Landsiedel O, Ghadmi E, Duquenoy S, Johansson M: Low power, low delay: opportunistic routing meets duty cycling. IPSN 2012, 185-196.
Bachir A, Dohler M, Watteyne T, Leung K: MAC essentials for wireless sensor networks. IEEE Commun. Surv. Tutor 2010, 12(2):222-248.
Han K, Luo J, Vasilakos AV: Algorithm design for data communications in duty-cycled wireless sensor networks: a survey. IEEE Commun. Mag 2013, 51(7):107-113.
Akyildiz IF, Melodia T, Chowdhury KR: A survey on wireless multimedia sensor networks. Elsevier Comput. Netw 2007, 51: 921-960. 10.1016/j.comnet.2006.10.002
So J, Kim J, Gupta I: Cushion: autonomically adaptive data fusion in wireless sensor networks. IEEE MASS (poster) 2005.
Ergen SC, Varaiya P: Energy efficient routing with delay guarantee for sensor networks. Springer Wireless Netw 2007, 13(5):679-690. 10.1007/s11276-006-8149-y
Ye W, Heidemann J, Estrin D: An energy efficient MAC protocol for wireless sensor networks. IEEE INFOCOM 2002, 1567-1576.
van Dam T, Langendoen K: An adaptive energy-efficient MAC protocol for wireless sensor networks. ACM Sensys 2003, 171-180.
Lin P, Qiao C, Wang X: Medium access control with a dynamic duty cycle for sensor networks. WCNC 2004, 1534-1539.
De Couto D, Aguayo D, Bicket J, Morris R: A high-throughput path metric for multi-hop wireless routing. Springer Wireless Netw 2005, 11(4):419-434. 10.1007/s11276-005-1766-z
Biswas S, Morris R: ExOR: opportunistic multihop routing for wireless networks. ACM SIGCOMM 2005, 133-144.
Zorzi M, Rao R: Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Multihop performance. IEEE Trans. Mobile Comput 2003, 2(4):337-348. 10.1109/TMC.2003.1255648
Gu Y, He T: Data forwarding in extremely low duty-cycle sensor networks with unreliable links. ACM SenSys 2007, 321-334.
Fasolo E, Rossi M, Widmer J, Zorzi M: In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wireless Commun 2007, 14(2):70-87.
Krishnamachari B, Estrin D, Wicker S: Modelling data-centric routing in wireless sensor networks. IEEE INFOCOM 2002.
Aonishi T, Matsuda T, Mikami S, Kawaguchi H, Ohta C, Yoshimoto M: Impact of aggregation efficiency on GIT routing for wireless sensor networks. IEEE International Conference on Parallel Processing Workshops 2006, 151-158.
Liu C, Gao G: Distributed monitoring and aggregation in wireless sensor networks. IEEE INFOCOM 2010, 1-9.
Villas L, Boukerche A, Ramos H, de Oliveira H, de Araujo R, Loureiro A: Drina: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans. Comput 2013, 62(4):676-689.
Yao Y, Cao Q, Vasilakos AV: Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Trans. Netw 2014, 99: 1-1.
Chilamkurti N, Zeadally S, Vasilakos A, Sharma V: Cross-layer support for energy efficient routing in wireless sensor networks. J. Sensors 2009., 2009(article id 134165):
Xiang L, Luo J, Vasilakos AV: Compressed data aggregation for energy efficient wireless sensor networks. IEEE SECON 2011, 46-54.
Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV: Prediction-based data aggregation in wireless sensor networks combining grey model and kalman filter. Comput. Commun 2011, 34(6):793-802. 10.1016/j.comcom.2010.10.003
Liu X-Y, Zhu Y, Kong L, Liu C, Gu Y, Vasilakos AV, Wu M-Y: Cdc: Compressive data collection for wireless sensor networks. IEEE Trans. Parallel Distributed Syst 2014., 99(1):
So J, Byun H: Opportunistic routing with in-network aggregation for asynchronous duty-cycled wireless sensor networks. Springer Wireless Netw 2014, 20(5):833-846. 10.1007/s11276-013-0645-2
Chipeon AS: SmartRF CC2420 Preliminary datasheet (rev 1.2). 2004.
Jurdak R, Ruzzelli A, O’Hare G: Adaptive radio modes in sensor networks: how deep to sleep? IEEE SECON 2008, 386-394.
Dietrich I, Dressler F: On the lifetime of wireless sensor networks. ACM Trans. Sensor Netw. (TOSN) 2009., 5(1): article no. 5
Mo Li, et al.: A Survey on Topology Control in Wireless Sensor Networks: Taxonomy, Comparative Study, and Open Issues. Proceedings of the IEEE 2013, 101(12):2538-2557.
Youssef M, et al.: Routing Metrics of Cognitive Radio Networks: A Survey. IEEE Communications Surveys and Tutorials 2014, 16(1):92-109.
Yuanyuan Zeng, et al.: Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks 2013, 19(2):161-173. 10.1007/s11276-012-0457-9