Operator means deformed by a fixed point method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard Products. Linear Algebra Appl. 26, 203–241 (1979)
Bhatia, R.: Matrix Analysis. Springer-Verlag, New York (1996)
Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)
Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618 (2006)
Bhatia, R., Karandikar, R.L.: Monotonicity of the matrix geometric mean. Math. Ann. 353, 1453–1467 (2012)
Fujii, J.I.: Interpolationality for symmetric operator means. Sci. Math. Jpn. 75, 267–274 (2012)
Fujii, J.I., Kamei, E.: Uhlmann’s interpolational method for operator means. Math. Japon. 34, 541–547 (1989)
Hiai, F.: Matrix analysis: matrix monotone functions, matrix means, and majorization. Interdiscip Inf Sci 16, 139–248 (2010)
Hiai, F.: Operator means deformed by a fixed point method, arXiv:1711.10170 [math.FA]
Hiai, F., Kosaki, H.: Means for matrices and comparison of their norms. Indiana Univ. Math. J. 48, 899–936 (1999)
Hiai, F., Lim, Y.: Log-majorization and Lie-Trotter formula for the Cartan barycenter on probability measure spaces. J. Math. Anal. Appl. 453, 195–211 (2017)
Hiai, F., Lim, Y.: Geometric mean flows and the Cartan barycenter on the Wasserstein space over positive definite matrices. Linear Algebra Appl. 533, 118–131 (2017)
Hiai, F., Lim, Y.: Operator means of probability measures, Preprint (2019); arXiv:1901.03858 [math.FA]
Hiai, F., Seo, Y., Wada, S.: Ando-Hiai type inequalities for multivariate operator means. Linear Multilinear Algebra 67, 2253–2281 (2019)
Kim, S., Lee, H.: The power mean and the least squares mean of probability measures on the space of positive definite matrices. Linear Algebra Appl. 465, 325–346 (2015)
Kim, S., Lee, H., Lim, Y.: A fixed point mean approximation to the Cartan barycenter of positive definite matrices. Linear Algebra Appl. 496, 420–437 (2016)
Lawson, J., Lim, Y.: Weighted means and Karcher equations of positive operators. Proc. Natl. Acad. Sci. USA 110, 15626–15632 (2013)
Lawson, J., Lim, Y.: Karcher means and Karcher equations of positive definite operators. Trans. Amer. Math. Soc. Ser. B 1, 1–22 (2014)
Lim, Y., Pálfia, M.: Approximations to the Karcher mean on Hadamard spaces via geometric power means. Forum Math. 27, 2609–2635 (2015)
Lim, Y., Pálfia, M.: Existence and uniqueness of the $$L^1$$-Karcher mean, Preprint (2017); arXiv:1703.04292 [math.FA]
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)
Pálfia, M.: Operator means of probability measures and generalized Karcher equations. Adv. Math. 289, 951–1007 (2016)
Pálfia, M., Petz, D.: Weighted multivariable operator means of positive definite operators. Linear Algebra Appl. 463, 134–153 (2014)
Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)
Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature, in: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 357–390, Contemp. Math., 338, Amer. Math. Soc., Providence, RI (2003)
Thompson, A.C.: On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14, 438–443 (1963)
Udagawa, Y., Yamazaki, T., Yanagida, M.: Some properties of weighted operator means and characterizations of interpolational means. Linear Algebra Appl. 517, 217–234 (2017)
Yamazaki, T.: The Riemannian mean and matrix inequalities related to the Ando-Hiai inequality and chaotic order. Oper. Matrices 6, 577–588 (2012)