Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steel

Corrosion Science - Tập 199 - Trang 110184 - 2022
Danyil Kovalov1, Christopher D. Taylor2, Helge Heinrich1, Robert G. Kelly1
1Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, United States
2DNV, 5777 Frantz Rd, Dublin, OH, United States

Tài liệu tham khảo

Szklarska-Smialowska, 2013, Influence of sulfide inclusions on the pitting corrosion of steels, Corrosion, 28, 388, 10.5006/0010-9312-28.10.388 Suter, 1997, A new microelectrochemical method to study pit initiation on stainless steels, Electrochim. Acta, 42, 3275, 10.1016/S0013-4686(70)01783-8 Frankel, 1998, Pitting corrosion of metals a review of the critical factors, J. Electrochem Soc., 145, 2186, 10.1149/1.1838615 Brossia, 1998, Influence of alloy sulfur content and bulk electrolyte composition on crevice corrosion initiation of austenitic stainless steel, Corrosion, 54, 145, 10.5006/1.3284838 Brossia, 1998, Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304SS, Corros. Sci., 40, 1851, 10.1016/S0010-938X(98)00084-5 Ryan, 2003, Stainless-steel corrosion and MnS inclusions, Nature, 424, 390, 10.1038/424390a Meng, 2003, Stainless-steel corrosion and MnS inclusions, Nature, 424, 389, 10.1038/424389b Zheng, 2010, Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels, Acta Mater., 58, 5070, 10.1016/j.actamat.2010.05.043 Ryan, 2002, Why stainless steel corrodes, Nature, 415, 770, 10.1038/415770a Zheng, 2013, Mechanism of (Mg,Al,Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion, Corros. Sci., 67, 20, 10.1016/j.corsci.2012.09.044 Wijesinghe, 2007, Real time pit initiation studies on stainless steels: the effect of sulphide inclusions, Corros. Sci., 49, 1755, 10.1016/j.corsci.2006.10.025 Streicher, 1957, Pitting corrosion of 18Cr-8Ni stainless steel, J. Electrochem. Soc., 104, 394, 10.1149/1.2428595 Schmuki, 2005, The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion, Corros. Sci., 47, 1239, 10.1016/j.corsci.2004.05.023 Stewart, 1992, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions, Corros. Sci., 33, 457, 10.1016/0010-938X(92)90074-D Ke, 1995, Initiation of corrosion pits at inclusions on 304 stainless steel, J. Electrochem. Soc., 142, 4056, 10.1149/1.2048462 Galtayries, 2004, SO2 adsorption at room temperature on Ni(111) surface studied by XPS, Surf. Interface Anal., 36, 997, 10.1002/sia.1821 Marcus, 1989, The sulphur-induced breakdown of the passive film and pitting studied on nickel and nickel alloys, Corros. Sci., 29, 455, 10.1016/0010-938X(89)90099-1 P. Marcus, J. Oudar, Role of Sulfur in the Formation and the Breakdown of Passive Films, 1987. Eklund, 1974, Initiation of pitting at sulfide inclusions in stainless steel, J. Electrochem. Soc., 121, 467, 10.1149/1.2401840 Wranglen, 1974, Pitting and sulphide inclusions in steel, Corros. Sci., 14, 331, 10.1016/S0010-938X(74)80047-8 Lott, 1989, The role of inclusions on initiation of crevice corrosion of stainless steel I. Experimental studies, J. Electrochem. Soc., 136, 973, 10.1149/1.2096896 Castle, 1990, Studies by auger spectroscopy of pit initiation at the site of inclusions in stainless steel, Corros. Sci., 30, 409, 10.1016/0010-938X(90)90047-9 Kosari, 2020, In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation, Corros. Sci., 177, 10.1016/j.corsci.2020.108912 Kosari, 2021, Laterally-resolved formation mechanism of a lithium-based conversion layer at the matrix and intermetallic particles in aerospace aluminium alloys, Corros. Sci., 190, 10.1016/j.corsci.2021.109651 Kosari, 2021, Choice—dealloying-driven cerium precipitation on intermetallic particles in aerospace aluminium alloys, J. Electrochem. Soc, 41505, 10.1149/1945-7111/abf50d Kosari, 2020, Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys, Corros. Sci., 177, 10.1016/j.corsci.2020.108947 Kosari, 2021, Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEM, npj Mater. Degrad., 5, 40, 10.1038/s41529-021-00189-y Zhou, 2020, Atomic-scale quasi in-situ TEM observation on the redistribution of alloying element Cu in a B4C/Al composite at the initial stage of corrosion, Corros. Sci., 174, 10.1016/j.corsci.2020.108808 Zhang, 2015, Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel, Corros. Sci., 100, 295, 10.1016/j.corsci.2015.08.009 Zhou, 2015, Strain-induced preferential dissolution at the dislocation emergences in MnS: an atomic scale study, Philos. Mag., 95, 2365, 10.1080/14786435.2015.1052030 Zhang, 2019, A review—pitting corrosion initiation investigated by TEM, J. Mater. Sci. Technol., 35, 1455, 10.1016/j.jmst.2019.01.013 Zhou, 2016, Atomic scale understanding of the interaction between alloying copper and MnS inclusions in stainless steels in NaCl electrolyte, Corros. Sci., 111, 414, 10.1016/j.corsci.2016.05.030 Schilling, 2015, Liquid in situ analytical electron microscopy: examining SCC precursor events for Type 304 stainless steel in H2O, Microsc. Microanal., 21, 1291, 10.1017/S1431927615007242 〈https://www.protochips.com/products/e-chips/〉. Protochips – E-chips. 〈https://www.protochips.com/products/poseidon-select/〉. Poseidon Select – Sample Holder Setup. Samin, 2018, First-principles investigation of surface properties and adsorption of oxygen on Ni-22Cr and the role of molybdenum, Corros. Sci., 134, 103, 10.1016/j.corsci.2018.02.017 Zunger, 1990, Special quasirandom structures, Phys. Rev. Lett., 65, 353, 10.1103/PhysRevLett.65.353 Oberdorfer, 2019, Bond-order bond energy model for alloys, Eng. Des. Process., 179, 406 Ke, 2020, First-principles modeling of the repassivation of corrosion resistant alloys: part I. O and Cl adsorption energy, J. Electrochem. Soc., 167 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Methfessel, 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B Condens. Matter, 40, 3616, 10.1103/PhysRevB.40.3616 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Muto, 2019, Microelectrochemistry on CrS and MnS inclusions and its relation with pitting potentials of stainless steels, ECS Trans., 16, 269, 10.1149/1.3229975 Marcus, 1994, On some fundamental factors in the effect of alloying elements on passivation of alloys, Corros. Sci., 36, 2155, 10.1016/0010-938X(94)90013-2 15156, NACE MR0175/ISO, Petroleum and Natural Gas Industries—Materials for Use In H2S-Containing Environments In Oil And Gas Production. M.A. Kashfipour, Investigation of Nonmetallic Inclusions and Their Corellation to Pitting Corrosion of Austenitic Stainless Steels, The University of Akron, 2015. Park, 1999, Local pH measurements during pitting corrosion at mns inclusions on stainless steel, Electrochem. Solid-State Lett., 3, 416, 10.1149/1.1391164